版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題強(qiáng)化十一帶電粒子在疊加場(chǎng)和組合場(chǎng)中的運(yùn)動(dòng)
【專題解讀】1.本專題是磁場(chǎng)、力學(xué)、電場(chǎng)等知識(shí)的綜合應(yīng)用,高考往往以計(jì)算壓軸題的形式
出現(xiàn).
2.學(xué)習(xí)本專題,可以培養(yǎng)同學(xué)們的審題能力、推理能力和規(guī)范表達(dá)能力.針對(duì)性的專題訓(xùn)練,
可以提高同學(xué)們解決難題、壓軸題的信心.
3.用到的知識(shí)有:動(dòng)力學(xué)觀點(diǎn)(牛頓運(yùn)動(dòng)定律)、運(yùn)動(dòng)學(xué)觀點(diǎn)、能量觀點(diǎn)(動(dòng)能定理、能量守恒
定律)、電場(chǎng)的觀點(diǎn)(類平拋運(yùn)動(dòng)的規(guī)律)、磁場(chǎng)的觀點(diǎn)(帶電粒子在磁場(chǎng)中運(yùn)動(dòng)的規(guī)律).
命題點(diǎn)一帶電粒子在疊加場(chǎng)中的運(yùn)動(dòng)
L帶電粒子在疊加場(chǎng)中無約束情況下的運(yùn)動(dòng)
(1)洛倫茲力、重力并存
①若重力和洛倫茲力平衡,則帶電粒子做勻速直線運(yùn)動(dòng).
②若重力和洛倫茲力不平衡,則帶電粒子將做復(fù)雜的曲線運(yùn)動(dòng),因洛倫茲力不做功,故機(jī)械
能守恒,由此可求解問題.
(2)電場(chǎng)力、洛倫茲力并存(不計(jì)重力的微觀粒子)
①若電場(chǎng)力和洛倫茲力平衡,則帶電粒子做勻速直線運(yùn)動(dòng).
②若電場(chǎng)力和洛倫茲力不平衡,則帶電粒子將做復(fù)雜的曲線運(yùn)動(dòng),因洛倫茲力不做功,可用
動(dòng)能定理求解問題.
(3)電場(chǎng)力、洛倫茲力、重力并存
①若三力平衡,一定做勻速直線運(yùn)動(dòng).
②若重力與電場(chǎng)力平衡,一定做勻速圓周運(yùn)動(dòng).
③若合力不為零且與速度方向不垂直,將做復(fù)雜的曲線運(yùn)動(dòng),因洛倫茲力不做功,可用能量
守恒定律或動(dòng)能定理求解問題.
2.帶電粒子在疊加場(chǎng)中有約束情況下的運(yùn)動(dòng)
帶電粒子在疊加場(chǎng)中受輕桿、輕繩、圓環(huán)、軌道等約束的情況下,常見的運(yùn)動(dòng)形式有直線運(yùn)
動(dòng)和圓周運(yùn)動(dòng),此時(shí)解題要通過受力分析明確變力、恒力做功情況,并注意洛倫茲力不做功
的特點(diǎn),運(yùn)用動(dòng)能定理、能量守恒定律結(jié)合牛頓運(yùn)動(dòng)定律求解.
【例1】(2017?全國卷I?16)如圖1,空間某區(qū)域存在勻強(qiáng)電場(chǎng)和勻強(qiáng)磁場(chǎng),電場(chǎng)方向豎直向上
(與紙面平行),磁場(chǎng)方向垂直于紙面向里,三個(gè)帶正電的微粒。、6、c電荷量相等,質(zhì)量分
別為7加、mt,、mc,已知在該區(qū)域內(nèi),。在紙面內(nèi)做勻速圓周運(yùn)動(dòng),6在紙面內(nèi)向右做勻速直
線運(yùn)動(dòng),。在紙面內(nèi)向左做勻速直線運(yùn)動(dòng).下列選項(xiàng)正確的是()
圖1
K.ma>mb>mcB.mh>ma>mc
C.mc>ma>mbD.mc>mb>ma
答案B
解析設(shè)三個(gè)微粒的電荷量均為q,
a在紙面內(nèi)做勻速圓周運(yùn)動(dòng),說明洛倫茲力提供向心力,重力與電場(chǎng)力平衡,則加ag=q£①
6在紙面內(nèi)向右做勻速直線運(yùn)動(dòng),三力平衡,則加淚=亞+卯8②
c在紙面內(nèi)向左做勻速直線運(yùn)動(dòng),三力平衡,則加cg+qzB=q£③
比較①②③式得:7〃戶加“>強(qiáng),選項(xiàng)B正確.
【變式1】(多選)(2018?河南省安陽市第二次模擬)如圖2所示,空間某處存在豎直向下的勻強(qiáng)
電場(chǎng)和垂直紙面向里的勻強(qiáng)磁場(chǎng),一個(gè)帶負(fù)電的金屬小球從"點(diǎn)水平射入場(chǎng)區(qū),經(jīng)一段時(shí)間
運(yùn)動(dòng)到N點(diǎn),關(guān)于小球由M到N的運(yùn)動(dòng),下列說法正確的是()
圖2
A.小球可能做勻變速運(yùn)動(dòng)B.小球一定做變加速運(yùn)動(dòng)
C.小球動(dòng)能可能不變D.小球機(jī)械能守恒
答案BC
解析小球從M到N,在豎直方向上發(fā)生了偏轉(zhuǎn),所以受到的豎直向下的洛倫茲力、豎直向
下的重力和豎直向上的電場(chǎng)力的合力不為零,并且速度方向變化,則洛倫茲力方向變化,所
以合力方向變化,故不可能做勻變速運(yùn)動(dòng),一定做變加速運(yùn)動(dòng),A錯(cuò)誤,B正確;若電場(chǎng)力
和重力等大反向,則運(yùn)動(dòng)過程中電場(chǎng)力和重力做功之和為零,而洛倫茲力不做功,所以小球
的動(dòng)能可能不變,重力勢(shì)能減小,這種情況下機(jī)械能不守恒,若電場(chǎng)力和重力不等大,則有
電場(chǎng)力做功,所以機(jī)械能也不守恒,故小球的機(jī)械能不守恒,C正確,D錯(cuò)誤.
【例2】(2016?天津理綜T1)如圖3所示,空間中存在著水平向右的勻強(qiáng)電場(chǎng),電場(chǎng)強(qiáng)度大小E
=5A/3N/C,同時(shí)存在著垂直紙面向里的勻強(qiáng)磁場(chǎng),其方向與電場(chǎng)方向垂直,磁感應(yīng)強(qiáng)度大
小3=0.5T.有一帶正電的小球,質(zhì)量a=1*10-6kg,電荷量q=2xl()―6C,正以速度v在圖
示的豎直面內(nèi)做勻速直線運(yùn)動(dòng),當(dāng)經(jīng)過尸點(diǎn)時(shí)撤掉磁場(chǎng)(不考慮磁場(chǎng)消失引起的電磁感應(yīng)現(xiàn)
象),取g=10m/s2,求:
圖3
(1)小球做勻速直線運(yùn)動(dòng)的速度。的大小和方向;
(2)從撤掉磁場(chǎng)到小球再次穿過尸點(diǎn)所在的這條電場(chǎng)線經(jīng)歷的時(shí)間t.
答案(1)20m/s方向與電場(chǎng)方向成60。角斜向上
(2)2^3s
解析(1)小球做勻速直線運(yùn)動(dòng)時(shí)受力如圖甲,其所受的三個(gè)力在同一平面內(nèi),合力為零,
有qvB=yjq^+m2^2?
代入數(shù)據(jù)解得z,=20m/s②
速度v的方向與電場(chǎng)E的方向之間的夾角滿尺tan。=也③
mg
代入數(shù)據(jù)解得tan9=3
8=60。④
(2)解法一撤去磁場(chǎng),小球在重力與電場(chǎng)力的合力作用下做類平拋運(yùn)動(dòng),如圖乙所示,設(shè)其
加速度為0,有a=JqE+m2g2⑤
m
設(shè)撤去磁場(chǎng)后小球在初速度方向上的分位移為X,有x=vt?
設(shè)小球在重力與電場(chǎng)力的合力方向上的分位移為y9有>=5好⑦
tan0=^?
x
聯(lián)立④⑤⑥⑦⑧式,代入數(shù)據(jù)解得t=2yl3s⑨
解法二撤去磁場(chǎng)后,由于電場(chǎng)力垂直于豎直方向,它對(duì)豎直方向的分運(yùn)動(dòng)沒有影響,以尸
點(diǎn)為坐標(biāo)原點(diǎn),豎直向上為正方向,小球在豎直方向上做勻減速運(yùn)動(dòng),其初速度為馬=osin。⑤
若使小球再次穿過尸點(diǎn)所在的電場(chǎng)線,僅需小球的豎直方向上分位移為零,則有Vyt-^gt2=
0@
聯(lián)立⑤⑥式,代入數(shù)據(jù)解得/=23s.
【變式2](2018?山西省孝義市質(zhì)量檢測(cè)三)如圖4所示,豎直平面內(nèi)存在水平方向的勻強(qiáng)電場(chǎng),
電場(chǎng)強(qiáng)度為£,同時(shí)存在垂直紙面向里的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度為8,紙面內(nèi)放置一光滑的
絕緣細(xì)桿,與水平方向成0=45。角.質(zhì)量為加、帶電荷量為g的金屬小環(huán)套在細(xì)桿上,以初速
度。0沿著細(xì)桿向下運(yùn)動(dòng),小環(huán)離開細(xì)桿后,恰好做直線運(yùn)動(dòng),則以下說法正確的是()
圖4
A,小球可能帶負(fù)電
B.電場(chǎng)方向可能水平向右
,也ng
C.小球的初速度6
qB
D.小球離開細(xì)桿時(shí)的速度。=旦
B
答案C
命題點(diǎn)二帶電粒子在組合場(chǎng)中的運(yùn)動(dòng)
1.組合場(chǎng):電場(chǎng)與磁場(chǎng)各位于一定的區(qū)域內(nèi),并不重疊,電場(chǎng)、磁場(chǎng)交替出現(xiàn).
2.分析思路
(1)劃分過程:將粒子運(yùn)動(dòng)的過程劃分為幾個(gè)不同的階段,對(duì)不同的階段選取不同的規(guī)律處理.
(2)找關(guān)鍵:確定帶電粒子在場(chǎng)區(qū)邊界的速度(包括大小和方向)是解決該類問題的關(guān)鍵.
(3)畫運(yùn)動(dòng)軌跡:根據(jù)受力分析和運(yùn)動(dòng)分析,大致畫出粒子的運(yùn)動(dòng)軌跡圖,有利于形象、直觀
地解決問題.
■模型1磁場(chǎng)與磁場(chǎng)的組合
【例3】(2017?全國卷II124)如圖5,空間存在方向垂直于紙面(xOy平面)向里的磁場(chǎng).在
區(qū)域,磁感應(yīng)強(qiáng)度的大小為瓦;x<0區(qū)域,磁感應(yīng)強(qiáng)度的大小為比o(常數(shù)4>1).一質(zhì)量為加、
電荷量為式4>0)的帶電粒子以速度。0從坐標(biāo)原點(diǎn)。沿x軸正向射入磁場(chǎng),此時(shí)開始計(jì)時(shí),
當(dāng)粒子的速度方向再次沿x軸正向時(shí),求:(不計(jì)重力)
圖5
(1)粒子運(yùn)動(dòng)的時(shí)間;
(2)粒子與。點(diǎn)間的距離.
答案(1)儂(1+1)Q心媽(1—1)
BoqABoq2
解析(1)在勻強(qiáng)磁場(chǎng)中,帶電粒子做勻速圓周運(yùn)動(dòng).設(shè)在區(qū)域,圓周半徑為在x<0
2
區(qū)域,圓周半徑為由洛倫茲力公式及牛頓運(yùn)動(dòng)定律得夕為。0=加微"①
2
q入Bo?o=n^~②
設(shè)粒子在1三0區(qū)域運(yùn)動(dòng)的時(shí)間為心則九=幽③
vo
粒子在XV。區(qū)域運(yùn)動(dòng)的時(shí)間為力,貝卜2=臉④
Vo
聯(lián)立①②③④式得,所求時(shí)間為/=力+,2=磔(1+1)⑤
BoqA
(2)由幾何關(guān)系及①②式得,所求距離為
d=2(R—七)=湃(1—;)
BoqZ
【變式3】(2019?廣東省韶關(guān)市調(diào)研)如圖6所示,在無限長的豎直邊界/C和。E間,上、下
部分分別充滿方向垂直于平面/DEC向外的勻強(qiáng)磁場(chǎng),上部分區(qū)域的磁感應(yīng)強(qiáng)度大小為瓦,
OF為上、下磁場(chǎng)的水平分界線.質(zhì)量為m、帶電荷量為+q的粒子從AC邊界上與。點(diǎn)
相距為。的尸點(diǎn)垂直于AC邊界射入上方磁場(chǎng)區(qū)域,經(jīng)。尸上的。點(diǎn)第一次進(jìn)入下方磁
場(chǎng)區(qū)域,。與。點(diǎn)的距離為3a.不考慮粒子重力.
圖6
(1)求粒子射入時(shí)的速度大?。?/p>
(2)要使粒子不從AC邊界飛出,求下方磁場(chǎng)區(qū)域的磁感應(yīng)強(qiáng)度?應(yīng)滿足的條件;
⑶若下方區(qū)域的磁感應(yīng)強(qiáng)度B=3Bo,粒子最終垂直DE邊界飛出,求邊界DE與4c間距
離的可能值.
答案(1聲幽(2)5金曲(3)4"°(〃=1,2,3…)
m3
解析(1)粒子在。方上方的運(yùn)動(dòng)軌跡如圖所示,
設(shè)粒子做圓周運(yùn)動(dòng)的半徑為R,由幾何關(guān)系可知R2—(R—Q)2=(3Q)2,R=5a
由牛頓第二定律可知:quBo=n^~,解得:0=
Rm
(2)當(dāng)粒子恰好不從4C邊界飛出時(shí),運(yùn)動(dòng)軌跡如圖所示,設(shè)粒子在。產(chǎn)下方做圓周運(yùn)動(dòng)的半
徑為n,
由幾何關(guān)系得:n+ncos0=3afcos0=~,所以尸產(chǎn)^^,根據(jù)85i=里巴,解得:臺(tái)尸鼓^,
58n3
當(dāng)時(shí),粒子不會(huì)從/C邊界飛出;
(3)當(dāng)3=3瓦時(shí),粒子的運(yùn)動(dòng)軌跡如圖所示,粒子在。尸下方的運(yùn)動(dòng)半徑為:設(shè)粒子
的速度方向再次與射入磁場(chǎng)時(shí)的速度方向一致時(shí)的位置為Pi,則P與Pi的連線一定與OF
平行,根據(jù)幾何關(guān)系知:PPi=4a,所以若粒子最終垂直。E邊界飛出,邊界DE與/C間
的距離為:L=nPPi=4/za(;7=1,2,3,")?
.模型2電場(chǎng)與磁場(chǎng)的組合
[例4](2018?全國卷II25)-足夠長的條狀區(qū)域內(nèi)存在勻強(qiáng)電場(chǎng)和勻強(qiáng)磁場(chǎng),其在xOy平面內(nèi)
的截面如圖7所示:中間是磁場(chǎng)區(qū)域,其邊界與夕軸垂直,寬度為/,磁感應(yīng)強(qiáng)度的大小為瓦
方向垂直于X。平面;磁場(chǎng)的上、下兩側(cè)為電場(chǎng)區(qū)域,寬度均為,電場(chǎng)強(qiáng)度的大小均為E,
方向均沿X軸正方向;M、N為條狀區(qū)域邊界上的兩點(diǎn),它們的連線與y軸平行.一帶正電的
粒子以某一速度從M點(diǎn)沿〉軸正方向射入電場(chǎng),經(jīng)過一段時(shí)間后恰好以從M點(diǎn)入射的速度
從N點(diǎn)沿y軸正方向射出.不計(jì)重力.
圖7
(1)定性畫出該粒子在電磁場(chǎng)中運(yùn)動(dòng)的軌跡;
(2)求該粒子從M點(diǎn)入射時(shí)速度的大小;
⑶若該粒子進(jìn)入磁場(chǎng)時(shí)的速度方向恰好與x軸正方向的夾角為匹,求該粒子的比荷及其從M
6
點(diǎn)運(yùn)動(dòng)到N點(diǎn)的時(shí)間.
答案(1)見解析圖(2)絲心(3力可:+
BlB2PE
解析(1)粒子運(yùn)動(dòng)的軌跡如圖(a)所示.(粒子在電場(chǎng)中的軌跡為拋物線,在磁場(chǎng)中為圓弧,上
下對(duì)稱)
(2)粒子從電場(chǎng)下邊界入射后在電場(chǎng)中做類平拋運(yùn)動(dòng).設(shè)粒子從〃點(diǎn)射入時(shí)速度的大小為
在下側(cè)電場(chǎng)中運(yùn)動(dòng)的時(shí)間為方,加速度的大小為Q;粒子進(jìn)入磁場(chǎng)的速度大小為0,方向與電
場(chǎng)方向的夾角為仇
如圖(b),速度沿電場(chǎng)方向的分量為s.
根據(jù)牛頓第二定律有qE=ma①
式中q和冽分別為粒子的電荷量和質(zhì)量.
由運(yùn)動(dòng)學(xué)公式有vi=at?
I'=vot?
U1=Z7COS6?
粒子在磁場(chǎng)中做勻速圓周運(yùn)動(dòng),設(shè)其運(yùn)動(dòng)軌道半徑為R,由洛倫茲力公式和牛頓第二定律得
由幾何關(guān)系得l=2Rcos0?
聯(lián)立①②③④⑤⑥式得利=竺匕~@
BI
vo
(3)由運(yùn)動(dòng)學(xué)公式和題給數(shù)據(jù)得。1=—7r⑧
tan-
6
聯(lián)立①②③⑦⑧式得2=4他?⑨
mB2P
設(shè)粒子由M點(diǎn)運(yùn)動(dòng)到N點(diǎn)所用的時(shí)間為,,則,=2H
式中7是粒子在磁場(chǎng)中做勻速圓周運(yùn)動(dòng)的周期,則?二四?
qB
「I岳/]
由③⑦⑨⑩?式得t'=整18/'J
【變式4】(2018?山西省晉城市第一次模擬)在如圖8甲所示的xOy坐標(biāo)系中,第一象限內(nèi)有垂
直坐標(biāo)平面的勻強(qiáng)磁場(chǎng);第二象限內(nèi)有方向水平向右、場(chǎng)強(qiáng)大小為E的勻強(qiáng)電場(chǎng)田;第四象
限內(nèi)有方向水平(以水平向右為正方向)、大小按圖乙規(guī)律變化的電場(chǎng)生,變化周期7=
㈣2一質(zhì)量為加、電荷量為十?的粒子,從(―xo,祝)點(diǎn)由靜止釋放,進(jìn)入第一象限后恰
VEq
能繞。點(diǎn)做勻速圓周運(yùn)動(dòng).以粒子經(jīng)過x軸進(jìn)入第四象限的時(shí)間點(diǎn)為電場(chǎng)£2的計(jì)時(shí)起點(diǎn),不
計(jì)粒子重力.求:
圖8
⑴第一象限內(nèi)勻強(qiáng)磁場(chǎng)的磁感應(yīng)強(qiáng)度B的大小;
(2)粒子在第四象限中運(yùn)動(dòng),當(dāng)/=,時(shí),粒子的速度;
(3)粒子在第四象限中運(yùn)動(dòng),當(dāng),=〃T(〃£N*)時(shí),粒子的坐標(biāo).
答案⑴入2(2)2、眄,方向與水平方向成45。角斜向右下方⑶[(〃+1)為,-
\1qxo\1m
2〃Xo](〃£N*)
解析(1)設(shè)粒子離開第二象限時(shí)的速度為。0,在第二象限內(nèi),由動(dòng)能定理得4£次)=3根。。2
,2qEx0
解得vo=
m
2
在第一象限內(nèi),粒子做勻速圓周運(yùn)動(dòng)的速度為。o,由洛倫茲力提供向心力得夕仍近=加%
X0
2mE
解得B=
qxo
(2)粒子進(jìn)入第四象限后,加速度〃=彼&=史",當(dāng)時(shí)在水平方向上有o水平=辦=2"X,
mm2m2
'2qExQ^
得。水平==
m
故粒子的速度大小v合=/研)=2
方向與水平方向成45。角斜向右下方
⑶粒子在第四象限中運(yùn)動(dòng)時(shí),)軸方向上做勻速直線運(yùn)動(dòng),x軸方向上前半個(gè)周期向右做勻
加速運(yùn)動(dòng),后半個(gè)周期向右做勻減速運(yùn)動(dòng)直到速度為0;每半個(gè)周期向右前進(jìn)x=1X退Gh
2m
=;,每個(gè)周期前進(jìn)xo
當(dāng)/="T時(shí),x軸距。點(diǎn)的距離x=xo+nxo
y軸距0點(diǎn)的距離y——vonT——2nxo
粒子的坐標(biāo)[(〃+l)xo,—2〃xo]("eN*)
1.(多選)(2018?河南省駐馬店市第二次質(zhì)檢)如圖1所示,平面直角坐標(biāo)系的第二象限內(nèi)存在著
垂直紙面向外、磁感應(yīng)強(qiáng)度大小為23的勻強(qiáng)磁場(chǎng),第三象限內(nèi)存在著垂直紙面向里、磁感
應(yīng)強(qiáng)度大小為3的勻強(qiáng)磁場(chǎng).一帶負(fù)電的粒子從原點(diǎn)O以某一速度沿與y軸成30。角方向斜向
上射入磁場(chǎng),且在第二象限運(yùn)動(dòng)時(shí)的軌跡圓的半徑為凡已知帶電粒子的質(zhì)量為處所帶電
荷量為4,且所受重力可以忽略.則()
圖1
A.粒子在第二象限和第三象限兩磁場(chǎng)中運(yùn)動(dòng)的軌跡圓半徑之比為1:2
B.粒子完成一次周期性運(yùn)動(dòng)的時(shí)間為孫
3qB
C.粒子從O位置入射后第二次經(jīng)過x軸時(shí)的位置到坐標(biāo)原點(diǎn)的距離為3^37?
D.若僅將粒子的入射速度大小變?yōu)樵瓉淼?倍,則粒子完成一次周期性運(yùn)動(dòng)的時(shí)間將減少
答案AC
解析由半徑公式皿知,軌跡圓半徑與磁感應(yīng)強(qiáng)度5成反比,所以粒子在第二象限和第
qB
三象限兩磁場(chǎng)中運(yùn)動(dòng)的軌跡圓半徑之比為1:2,故A正確;粒子在磁場(chǎng)中運(yùn)動(dòng)一個(gè)周期的軌
跡如圖所示:
在第二象限的周期八=辿=畋圓心角為120。,運(yùn)動(dòng)時(shí)間在第三象限
q,2BqB36003qB
運(yùn)動(dòng)的周期?2=物,圓心角為120。,運(yùn)動(dòng)時(shí)間/2=辿乙=①,所以粒子完成一次周期性
qB36003qB
運(yùn)動(dòng)的時(shí)間方=/1+/2=四,故B錯(cuò)誤;粒子在第三象限軌跡圓的半徑為&=2凡從。點(diǎn)入
qB
射后第一次經(jīng)過X軸的距離Xl=34=3七第二次圓弧的弦長X2=3&=23七所以粒子
從O位置入射后第二次經(jīng)過x軸時(shí)的位置到坐標(biāo)原點(diǎn)的距離為X=XI+X2=3\/3凡故C正確;
若僅將粒子的入射速度變?yōu)樵瓉淼?倍,周期7=綱與速度無關(guān),圓心角不變,所以在磁
qB
場(chǎng)中運(yùn)動(dòng)時(shí)間/=且7不變,故D錯(cuò)誤.
2兀
2.(多選)(2019?山西省晉城市第一次模擬)足夠大的空間內(nèi)存在著豎直向上的勻強(qiáng)磁場(chǎng)和勻強(qiáng)
電場(chǎng),有一帶正電的小球在電場(chǎng)力和重力作用下處于靜止?fàn)顟B(tài).現(xiàn)將磁場(chǎng)方向順時(shí)針旋轉(zhuǎn)30%
同時(shí)給小球一個(gè)垂直磁場(chǎng)方向斜向下的速度0(如圖2所示),則關(guān)于小球的運(yùn)動(dòng),下列說法正
確的是()
圖2
A.小球做類平拋運(yùn)動(dòng)
B.小球在紙面內(nèi)做勻速圓周運(yùn)動(dòng)
C.小球運(yùn)動(dòng)到最低點(diǎn)時(shí)電勢(shì)能增加
D.整個(gè)運(yùn)動(dòng)過程中機(jī)械能不守恒
答案CD
解析小球在復(fù)合電磁場(chǎng)中處于靜止?fàn)顟B(tài),只受兩個(gè)力作用,即重力和電場(chǎng)力且兩者平衡,
當(dāng)把磁場(chǎng)順時(shí)針方向旋轉(zhuǎn)30°,且給小球一個(gè)垂直磁場(chǎng)方向的速度o,則小球受到的合力就是
洛倫茲力,且與速度方向垂直,所以小球在垂直于紙面的傾斜平面內(nèi)做勻速圓周運(yùn)動(dòng),選項(xiàng)
A、B錯(cuò)誤;小球從開始到最低點(diǎn)過程中克服電場(chǎng)力做功,電勢(shì)能增加,選項(xiàng)C正確;整個(gè)
運(yùn)動(dòng)過程中機(jī)械能不守恒,選項(xiàng)D正確.
3.(2018?江西省十所省重點(diǎn)高中二模)如圖3所示,在紙面內(nèi)有兩個(gè)磁感應(yīng)強(qiáng)度大小均為3、
方向相反的勻強(qiáng)磁場(chǎng),虛線等邊三角形/8C為兩磁場(chǎng)的理想邊界.已知三角形/8C邊長為3
虛線三角形內(nèi)為方向垂直紙面向外的勻強(qiáng)磁場(chǎng),三角形外部的足夠大空間為方向垂直紙面向
里的勻強(qiáng)磁場(chǎng).一電荷量為+如質(zhì)量為%的帶正電粒子從N3邊中點(diǎn)尸垂直邊射入三角
形外部磁場(chǎng),不計(jì)粒子的重力和一切阻力,試求:
圖3
(1)要使粒子從P點(diǎn)射出后在最短時(shí)間內(nèi)通過B點(diǎn)、,則從尸點(diǎn)射出時(shí)的速度oo為多大?
(2)滿足(1)間的粒子通過3后第三次通過磁場(chǎng)邊界時(shí)到B的距離是多少?
(3)滿足(1)間的粒子從尸點(diǎn)射入外部磁場(chǎng)到再次返回到尸點(diǎn)的最短時(shí)間為多少?畫出粒子的
軌跡并計(jì)算.
答案(1產(chǎn)(2)—(3)見解析
4m4
解析(1)當(dāng)粒子運(yùn)動(dòng)半個(gè)圓周到達(dá)8點(diǎn)時(shí)所用時(shí)間最短,此時(shí)粒子做圓周運(yùn)動(dòng)半徑廠=4根
4
據(jù)洛倫茲力提供向心力可得r=-,解得。()=理;
qB4m
(2)粒子做圓周運(yùn)動(dòng)半徑T=±由幾何關(guān)系可知:
4
設(shè)過B點(diǎn)后第三次通過磁場(chǎng)邊界時(shí)到B點(diǎn)的距離為s,
。3L
s=3r=一;
4
(3)粒子運(yùn)動(dòng)軌跡如圖
粒子在磁場(chǎng)中運(yùn)動(dòng)的周期7=—,由圖可知從P點(diǎn)射入外部磁場(chǎng)到再次返回到P點(diǎn)的最短
qB
時(shí)間為
63qB
4.(2018?河南省濮陽市第二次模擬)如圖4所示,在xQy坐標(biāo)系的第二象限內(nèi)有水平向右的勻
強(qiáng)電場(chǎng),第四象限內(nèi)有豎直向上的勻強(qiáng)電場(chǎng),兩個(gè)電場(chǎng)的場(chǎng)強(qiáng)大小相等,第四象限內(nèi)還有垂
直于紙面的勻強(qiáng)磁場(chǎng),讓一個(gè)質(zhì)量為加、帶電荷量為夕的粒子在第二象限內(nèi)的P(一乙L)點(diǎn)
由靜止釋放,結(jié)果粒子沿直線運(yùn)動(dòng)到坐標(biāo)原點(diǎn)并進(jìn)入第四象限,粒子在第四象限內(nèi)運(yùn)動(dòng)后從
x軸上的0。,0)點(diǎn)進(jìn)入第一象限,重力加速度為g,求:
圖4
(1)粒子從P點(diǎn)運(yùn)動(dòng)到坐標(biāo)原點(diǎn)的時(shí)間;
(2)勻強(qiáng)磁場(chǎng)的磁感應(yīng)強(qiáng)度的大小和方向.
答案(1八丹(2)以*方向垂直紙面向里
7gqNL
解析(1)粒子在第二象限內(nèi)做直線運(yùn)動(dòng),因此電場(chǎng)力和重力的合力方向沿P。方向,則粒子
帶正電.
由運(yùn)動(dòng)學(xué)知識(shí)可得/〃g=q£i=q£2,y^2mg—ma,也解得/絲
2Vg
(2)設(shè)粒子從。點(diǎn)進(jìn)入第四象限的速度大小為V,由動(dòng)能定理可得僅
解得?=2\[gL,方向與x軸正方向成45。角,由于粒子在第四象限內(nèi)受到電場(chǎng)力與重力等大
反向,因此粒子在洛倫茲力作用下做勻速圓周運(yùn)動(dòng),由于粒子做勻速圓周運(yùn)動(dòng)后從x軸上的
。(工,0)點(diǎn)進(jìn)入第一象限,根據(jù)左手定則可以判斷,磁場(chǎng)方向垂直于紙面向里.
粒子做勻速圓周運(yùn)動(dòng)的軌跡如圖,由幾何關(guān)系可知
粒子做勻速圓周運(yùn)動(dòng)的軌跡半徑為R=^L
2
由牛頓第二定律可得5卯=加彳,解得餐
5.(2018?山東省日照市一模)如圖5所示,在坐標(biāo)系xQy平面的x>0區(qū)域內(nèi),存在電場(chǎng)強(qiáng)度大
小E=2X105N/C、方向垂直于x軸的勻強(qiáng)電場(chǎng)和磁感應(yīng)強(qiáng)度大小5=0.2T、方向與xOy平面
垂直向外的勻強(qiáng)磁場(chǎng).在y軸上有一足夠長的熒光屏尸0,在x軸上的M(10,0)點(diǎn)處有一粒子
-27
發(fā)射槍向x軸正方向連續(xù)不斷地發(fā)射大量質(zhì)量m=6.4xl0kg>電荷量4=3.2x10-19c的帶
正電粒子(重力不計(jì)),粒子恰能沿x軸做勻速直線運(yùn)動(dòng).若撤去電場(chǎng),并使粒子發(fā)射槍以M點(diǎn)
為軸在xOy平面內(nèi)以角速度。=2兀rad/s順時(shí)針勻速轉(zhuǎn)動(dòng)(整個(gè)裝置都處在真空中).
圖5
(1)判斷電場(chǎng)方向,求粒子離開發(fā)射槍時(shí)的速度;
(2)帶電粒子在磁場(chǎng)中運(yùn)動(dòng)的軌跡半徑;
⑶熒光屏上閃光點(diǎn)的范圍距離;
(4)熒光屏上閃光點(diǎn)從最低點(diǎn)移動(dòng)到最高點(diǎn)所用的時(shí)間.
答案見解析
解析(1)帶正電粒子(重力不計(jì))在復(fù)合場(chǎng)中沿x軸做勻速直線運(yùn)動(dòng),據(jù)左手定則判定洛倫茲
力方向向下,所以電場(chǎng)力方向向上,電場(chǎng)方向向上有《£
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024幼兒教育機(jī)構(gòu)教師勞動(dòng)合同范本3篇
- 2024年防火門質(zhì)量保障體系合同
- 2024年高端汽車零部件技術(shù)保密與全球銷售代理合同3篇
- 2024私人住宅施工項(xiàng)目協(xié)議范本版B版
- 營銷策劃方案模板合集五篇(可編輯)
- 2025年度金融科技解決方案合同3篇
- 月考分析發(fā)言稿(15篇)
- 2025年度廠區(qū)食堂承包合同:綠色環(huán)保食材采購協(xié)議3篇
- 2024年鋁制品供貨條款
- 鄭州信息工程職業(yè)學(xué)院《燃燒理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年急診科護(hù)理工作計(jì)劃
- 2024-2025學(xué)年山東省聊城市高一上學(xué)期期末數(shù)學(xué)教學(xué)質(zhì)量檢測(cè)試題(附解析)
- 違規(guī)行為與處罰管理制度
- 2025年正規(guī)的離婚協(xié)議書
- 2025中國地震應(yīng)急搜救中心公開招聘應(yīng)屆畢業(yè)生5人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 醫(yī)療健康大模型白皮書(1.0版) 202412
- 部編版八年級(jí)初二語文上冊(cè)第六單元《寫作表達(dá)要得體》說課稿
- 《內(nèi)部培訓(xùn)師培訓(xùn)》課件
- 遼寧沈陽市文體旅產(chǎn)業(yè)發(fā)展集團(tuán)有限公司招聘筆試沖刺題2024
- 公共衛(wèi)生管理制度(3篇)
- 2024版《糖尿病健康宣教》課件
評(píng)論
0/150
提交評(píng)論