版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省濟(jì)寧市汶上一中高考沖刺押題(最后一卷)數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)過(guò)點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),為坐標(biāo)原點(diǎn),若,且,則點(diǎn)的軌跡方程是()A. B.C. D.2.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.53.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.4.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.5.造紙術(shù)、印刷術(shù)、指南針、火藥被稱(chēng)為中國(guó)古代四大發(fā)明,此說(shuō)法最早由英國(guó)漢學(xué)家艾約瑟提出并為后來(lái)許多中國(guó)的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對(duì)中國(guó)古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動(dòng)作用.某小學(xué)三年級(jí)共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問(wèn)中國(guó)古代四大發(fā)明,能說(shuō)出兩種發(fā)明的有45人,能說(shuō)出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級(jí)的500名學(xué)生中,對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有()A.69人 B.84人 C.108人 D.115人6.某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多7.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.28.若直線經(jīng)過(guò)拋物線的焦點(diǎn),則()A. B. C.2 D.9.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)10.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.11.集合,則()A. B. C. D.12.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=0二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)村子里一共有個(gè)人,其中一個(gè)人是謠言制造者,他編造了一條謠言并告訴了另一個(gè)人,這個(gè)人又把謠言告訴了第三個(gè)人,如此等等.在每一次謠言傳播時(shí),謠言的接受者都是在其余個(gè)村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒(méi)有回到最初的造謠者的概率是_______.14.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為_(kāi)_____.15.根據(jù)如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為_(kāi)___________.16.函數(shù)過(guò)定點(diǎn)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知拋物線:與圓:()相交于,,,四個(gè)點(diǎn),(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時(shí),求直線與直線的交點(diǎn)的坐標(biāo).18.(12分)已知,(其中).(1)求;(2)求證:當(dāng)時(shí),.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.21.(12分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問(wèn)小明上學(xué)的路線有多少種不同可能?(2)在保證通過(guò)紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過(guò)處,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開(kāi)哪條路線?22.(10分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算表示出,從而可利用表示出;由坐標(biāo)運(yùn)算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對(duì)稱(chēng)故選:【點(diǎn)睛】本題考查動(dòng)點(diǎn)軌跡方程的求解,涉及到平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算;關(guān)鍵是利用動(dòng)點(diǎn)坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算可整理得軌跡方程.2、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】
聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.4、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱(chēng)軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問(wèn)題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.5、D【解析】
先求得名學(xué)生中,只能說(shuō)出一種或一種也說(shuō)不出的人數(shù),由此利用比例,求得名學(xué)生中對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的人數(shù).【詳解】在這100名學(xué)生中,只能說(shuō)出一種或一種也說(shuō)不出的有人,設(shè)對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有人,則,解得人.故選:D【點(diǎn)睛】本小題主要考查利用樣本估計(jì)總體,屬于基礎(chǔ)題.6、D【解析】
根據(jù)兩個(gè)圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項(xiàng)的真假.【詳解】在A中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的,所以是正確的;在C中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點(diǎn)睛】本題主要考查了命題的真假判定,以及統(tǒng)計(jì)圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識(shí)的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】
由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.8、B【解析】
計(jì)算拋物線的交點(diǎn)為,代入計(jì)算得到答案.【詳解】可化為,焦點(diǎn)坐標(biāo)為,故.故選:.【點(diǎn)睛】本題考查了拋物線的焦點(diǎn),屬于簡(jiǎn)單題.9、C【解析】
計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱(chēng)為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.10、A【解析】
準(zhǔn)確畫(huà)圖,由圖形對(duì)稱(chēng)性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱(chēng)性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問(wèn)題是圓錐曲線中的重點(diǎn)問(wèn)題,需強(qiáng)化練習(xí),才能在解決此類(lèi)問(wèn)題時(shí)事半功倍,信手拈來(lái).11、D【解析】
利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見(jiàn)集合的符號(hào)表示,本題屬于基礎(chǔ)題.12、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評(píng):本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用相互獨(dú)立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會(huì)回到最初的人;從第2次傳播開(kāi)始,每1次謠言傳播,第一個(gè)制造謠言的人被選中的概率都是,沒(méi)有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.14、1【解析】
由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.15、【解析】
滿足條件執(zhí)行,否則執(zhí)行.【詳解】本題實(shí)質(zhì)是求分段函數(shù)在處的函數(shù)值,當(dāng)時(shí),.故答案為:1【點(diǎn)睛】本題考查條件語(yǔ)句的應(yīng)用,此類(lèi)題要做到讀懂算法語(yǔ)句,本題是一道容易題.16、【解析】
令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過(guò)定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問(wèn)題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見(jiàn)函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)點(diǎn)的坐標(biāo)為【解析】
將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程,拋物線與圓有四個(gè)交點(diǎn)需滿足關(guān)于的一元二次方程在上有兩個(gè)不等的實(shí)數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個(gè)交點(diǎn)坐標(biāo)為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點(diǎn)坐標(biāo),再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達(dá)式,令,由及知,對(duì)關(guān)于的面積函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時(shí)的值,進(jìn)而求出點(diǎn)坐標(biāo).【詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個(gè)不等的實(shí)數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設(shè)方程的兩個(gè)根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點(diǎn)的坐標(biāo)為,因?yàn)樗倪呅螢榈妊菪?所以,令,則,所以,因?yàn)?所以當(dāng)時(shí),;當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即當(dāng)時(shí),四邊形的面積取得最大值,因?yàn)?點(diǎn)的坐標(biāo)為,所以當(dāng)四邊形的面積取得最大值時(shí),點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值與最值、拋物線及其標(biāo)準(zhǔn)方程及直線與圓錐曲線相關(guān)的最值問(wèn)題;考查運(yùn)算求解能力、轉(zhuǎn)化與化歸能力和知識(shí)的綜合運(yùn)用能力;利用函數(shù)的思想求圓錐曲線中面積的最值是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1)(2)見(jiàn)解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當(dāng)時(shí),;假設(shè)當(dāng)時(shí),結(jié)論成立,即,兩邊同乘以3得:而∴,即時(shí)結(jié)論也成立,∴當(dāng)時(shí),成立.綜上原不等式獲證.19、(1);(2)【解析】
(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問(wèn)題,利用分類(lèi)討論是解決本題的較好方法,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計(jì)算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,運(yùn)用二倍角公式和兩角
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 置業(yè)顧問(wèn)工作總結(jié)模板(31篇)
- 天然氣的市場(chǎng)預(yù)測(cè)與投資評(píng)估考核試卷
- 培訓(xùn)與員工職業(yè)發(fā)展規(guī)劃的關(guān)系考核試卷
- 2024個(gè)人借款合同格式樣本
- 蘇州科技大學(xué)天平學(xué)院《機(jī)械設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遠(yuǎn)離垃圾食品安全教育
- 廣告創(chuàng)意與情感營(yíng)銷(xiāo)考核試卷
- 生物植物學(xué)術(shù)報(bào)告
- 學(xué)校預(yù)防艾滋病工作總結(jié)(13篇)
- 幼兒園大班下學(xué)期班務(wù)工作總結(jié)
- 管理能力與領(lǐng)導(dǎo)力管理培訓(xùn)
- 2023上半年四川公務(wù)員考試申論試題(省市卷)
- 2024年度專(zhuān)業(yè)會(huì)務(wù)組織服務(wù)協(xié)議書(shū)版
- 函數(shù)的圖象及變換省公開(kāi)課獲獎(jiǎng)?wù)n件說(shuō)課比賽一等獎(jiǎng)?wù)n件
- 2020-2021學(xué)年河南省洛陽(yáng)市高一上學(xué)期期中考試化學(xué)試題
- 四年級(jí)上冊(cè)語(yǔ)文第六單元任務(wù)群教學(xué)設(shè)計(jì)
- 2024-2025學(xué)年北師大版九年級(jí)數(shù)學(xué)上冊(cè)期中培優(yōu)試題
- 《高血壓科普知識(shí)》課件
- 《建筑工程設(shè)計(jì)文件編制深度規(guī)定》(2022年版)
- 心理咨詢(xún)中知情同意的倫理困境與解決途徑
- 山地光伏除草施工方案
評(píng)論
0/150
提交評(píng)論