2024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第22講 園冪定理_第1頁
2024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第22講 園冪定理_第2頁
2024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第22講 園冪定理_第3頁
2024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第22講 園冪定理_第4頁
2024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第22講 園冪定理_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PAGEPAGE72024年九年級初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答第二十二講園冪定理相交弦定理、切割線定理、割線定理統(tǒng)稱為圓冪定理.圓冪定理實質(zhì)上是反映兩條相交直線與圓的位置關(guān)系的性質(zhì)定理,其本質(zhì)是與比例線段有關(guān).相交弦定理、切割線定理、割線定理有著密切的聯(lián)系,主要體現(xiàn)在:1.用運動的觀點看,切割線定理、割線定理是相交弦定理另一種情形,即移動圓內(nèi)兩條相交弦使其交點在圓外的情況;2.從定理的證明方法看,都是由一對相似三角形得到的等積式.熟悉以下基本圖形、基本結(jié)論:【例題求解】【例1】如圖,PT切⊙O于點T,PA交⊙O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB=.思路點撥綜合運用圓冪定理、勾股定理求PB長.注:比例線段是幾何之中一個重要問題,比例線段的學(xué)習(xí)是一個由一般到特殊、不斷深化的過程,大致經(jīng)歷了四個階段:(1)平行線分線段對應(yīng)成比例;(2)相似三角形對應(yīng)邊成比例;(3)直角三角形中的比例線段可以用積的形式簡捷地表示出來;(4)圓中的比例線段通過圓冪定理明快地反映出來.【例2】如圖,在平行四邊形ABCD中,過A、B、C三點的圓交AD于點E,且與CD相切,若AB=4,BE=5,則DE的長為()A.3B.4C.D.思路點撥連AC,CE,由條件可得許多等線段,為切割線定理的運用創(chuàng)設(shè)條件.注:圓中線段的算,常常需要綜合相似三角形、直角三角形、圓冪定理等知識,通過代數(shù)化獲解,加強對圖形的分解,注重信息的重組與整合是解圓中線段計算問題的關(guān)鍵.【例3】如圖,△ABC內(nèi)接于⊙O,AB是∠O的直徑,PA是過A點的直線,∠PAC=∠B.(1)求證:PA是⊙O的切線;(2)如果弦CD交AB于E,CD的延長線交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的長和∠ECB的正切值.思路點撥直徑、切線對應(yīng)著與圓相關(guān)的豐富知識.(1)問的證明為切割線定理的運用創(chuàng)造了條件;引入?yún)?shù)x、k處理(2)問中的比例式,把相應(yīng)線段用是的代數(shù)式表示,并尋找x與k的關(guān)系,建立x或k的方程.【例4】如圖,P是平行四邊形AB的邊AB的延長線上一點,DP與AC、BC分別交于點E、E,EG是過B、F、P三點圓的切線,G為切點,求證:EG=DE思路點撥由切割線定理得EG2=EF·EP,要證明EG=DE,只需證明DE2=EF·EP,這樣通過圓冪定理把線段相等問題的證明轉(zhuǎn)化為線段等積式的證明.注:圓中的許多問題,若圖形中有適用圓冪定理的條件,則能化解問題的難度,而圓中線段等積式是轉(zhuǎn)化問題的橋梁.需要注意的是,圓冪定理的運用不僅局限于計算及比例線段的證明,可拓展到平面幾何各種類型的問題中.【例5】如圖,以正方形ABCD的AB邊為直徑,在正方形內(nèi)部作半圓,圓心為O,DF切半圓于點E,交AB的延長線于點F,BF=4.求:(1)cos∠F的值;(2)BE的長.思路點撥解決本例的基礎(chǔ)是:熟悉圓中常用輔助線的添法(連OE,AE);熟悉圓中重要性質(zhì)定理及角與線段的轉(zhuǎn)化方法.對于(1),先求出EF,F(xiàn)O值;對于(2),從△BEF∽△EAF,Rt△AEB入手.注:當(dāng)直線形與圓結(jié)合時就產(chǎn)生錯綜復(fù)雜的圖形,善于分析圖形是解與圓相關(guān)綜合題的關(guān)鍵,分析圖形可從以下方面入手:(1)多視點觀察圖形.如本例從D點看可用切線長定理,從F點看可用切割線定理.(2)多元素分析圖形.圖中有沒有特殊點、特殊線、特殊三角形、特殊四邊形、全等三角形、相似三角形.(3)將以上分析組合,尋找聯(lián)系.學(xué)力訓(xùn)練1.如圖,PT是⊙O的切線,T為切點,PB是⊙O的割線,交⊙O于A、B兩點,交弦CD于點M,已知CM=10,MD=2,PA=MB=4,則PT的長為.2.如圖,PAB、PCD為⊙O的兩條割線,若PA=5,AB=7,CD=11,則AC:BD=.3.如圖,AB是⊙O的直徑,C是AB延長線上的一點,CD是⊙O的切線,D為切點,過點B作⊙O的切線交CD于點F,若AB=CD=2,則CE=.4.如圖,在△ABC中,∠C=90°,AB=10,AC=6,以AC為直徑作圓與斜邊交于點P,則BP的長為()A.6.4B.3.2C.3.6D.85.如圖,⊙O的弦AB平分半徑OC,交OC于P點,已知PA、PB的長分別為方程的兩根,則此圓的直徑為()A.B.C.D.⌒⌒⌒6.如圖,⊙O的直徑Ab垂直于弦CD,垂足為H,點P是AC上一點(點P不與A、C兩點重合),連結(jié)PC、PD、PA、AD,點E在AP的延長線上,PD與AB交于點F,給出下列四個結(jié)論:①CH2=AH·BH;②AD=AC:③AD2=DF⌒⌒⌒A.1B.2C.3D.47.如圖,BC是半圓的直徑,O為圓心,P是BC延長線上一點,PA切半圓于點A,AD⊥BC于點D.(1)若∠B=30°,問AB與AP是否相等?請說明理由;(2)求證:PD·PO=PC·PB;(3)若BD:DC=4:l,且BC=10,求PC的長.8.如圖,已知PA切⊙O于點A,割線PBC交⊙O于點B、C,PD⊥AB于點D,PD、AO的延長線相交于點E,連CE并延長交⊙O于點F,連AF.(1)求證:△PBD∽△PEC;(2)若AB=12,tan∠EAF=,求⊙O的半徑的長.9.如圖,已知AB是⊙O的直徑,PB切⊙O于點B,PA交⊙O于點C,PF分別交AB、BC于E、D,交⊙O于F、G,且BE、BD恰哈好是關(guān)于x的方程(其中為實數(shù))的兩根.(1)求證:BE=BD;(2)若GE·EF=,求∠A的度數(shù).10.如圖,△ABC中,∠C=90°,O為AB上一點,以O(shè)為圓心,OB為半徑的圓與AB相交于點E,與AC相切于點D,已知AD=2,AE=1,那么BC=.11.如圖,已知A、B、C、D在同一個圓上,BC=CD,AC與BD交于E,若AC=8,CD=4,且線段BE、ED為正整數(shù),則BD=.12.如圖,P是半圓O的直徑BC延長線上一點,PA切半圓于點A,AH⊥BC于H,若PA=1,PB+PC=(>2),則PH=()A.B.C.D.13.如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過BC的中點D,且EF∥AB,若AB=2,則DE的長為()A.B.C.D.114.如圖,已知AB為⊙O的直徑,C為⊙O上一點,延長BC至D,使CD=BC,CE⊥AD于E,BE交⊙O于F,AF交CE于P,求證:PE=PC.15.已知:如圖,ABCD為正方形,以D點為圓心,AD為半徑的圓弧與以BC為直徑的⊙O相交于P、C兩點,連結(jié)AC、AP、CP,并延長CP、AP分別交AB、BC、⊙O于E、H、F三點,連結(jié)OF.(1)求證:△AEP∽△CEA;(2)判斷線段AB與OF的位置關(guān)系,并證明你的結(jié)論;(3)求BH:HC16.如圖,PA、PB是⊙O的兩條切線,PEC是一條割線,D是AB與PC的交點,若PE=2,CD=1,求DE的長.17.如圖,⊙O的直徑的長是關(guān)于x的二次方程(是整數(shù))的最大整數(shù)根,P是⊙O外一點,過點P作⊙O的切線PA和割線PBC,其中A為切點,點B、C是直線PBC與⊙O的交點,若PA、PB、PC的長都是正整數(shù),且PB的長不是合數(shù),求PA+PB+PC的值.參考答案第二十三講圓與圓圓與圓的位置關(guān)系有外離、外切、相交、內(nèi)切、內(nèi)含五種情形,判定兩圓的位置關(guān)系有如下三種方法:1.通過兩圓交點的個數(shù)確定;2.通過兩圓的半徑與圓心距的大小量化確定;3.通過兩圓的公切線的條數(shù)確定.為了溝通兩圓,常常添加與兩圓都有聯(lián)系的一些線段,如公共弦、共切線、連心線,以及兩圓公共部分相關(guān)的角和線段,這是解圓與圓位置關(guān)系問題的常用輔助線.熟悉以下基本圖形、基本結(jié)論:【例題求解】【例1】如圖,⊙Ol與半徑為4的⊙O2內(nèi)切于點A,⊙Ol經(jīng)過圓心O2,作⊙O2的直徑BC交⊙Ol于點D,EF為過點A的公切線,若O2D=,那么∠BAF=度.第二十四講幾何的定值與最值幾何中的定值問題,是指變動的圖形中某些幾何元素的幾何量保持不變,或幾何元素間的某些幾何性質(zhì)或位置關(guān)系不變的一類問題,解幾何定值問題的基本方法是:分清問題的定量及變量,運用特殊位置、極端位置,直接計算等方法,先探求出定值,再給出證明.幾何中的最值問題是指在一定的條件下,求平面幾何圖形中某個確定的量(如線段長度、角度大小、圖形面積)等的最大值或最小值,求幾何最值問題的基本方法有:1.特殊位置與極端位置法;2.幾何定理(公理)法;3.?dāng)?shù)形結(jié)合法等.注:幾何中的定值與最值近年廣泛出現(xiàn)于中考競賽中,由冷點變?yōu)闊狳c.這是由于這類問題具有很強的探索性(目標(biāo)不明確),解題時需要運用動態(tài)思維、數(shù)形結(jié)合、特殊與一般相結(jié)合、邏輯推理與合情想象相結(jié)合等思想方法.【例題就解】【例1】如圖,已知AB=10,P是線段AB上任意一點,在AB的同側(cè)分別以AP和PB為邊作等邊△APC和等邊△BPD,則CD長度的最小值為.思路點撥如圖,作CC′⊥AB于C,DD′⊥AB于D′,DQ⊥CC′,CD2=DQ2+CQ2,DQ=AB一常數(shù),當(dāng)CQ越小,CD越小,本例也可設(shè)AP=,則PB=,從代數(shù)角度探求CD的最小值.注:從特殊位置與極端位置的研究中易得到啟示,常能找到解題突破口,特殊位置與極端位置是指:(1)中點處、垂直位置關(guān)系等;(2)端點處、臨界位置等.⌒⌒A.從30°到60°變動B.從60°到90°變動C.保持30°不變D.保持60°不變思路點撥先考慮當(dāng)圓心在正三角形的頂點C時,其弧的度數(shù),再證明一般情形,從而作出判斷.注:幾何定值與最值問題,一般都是置于動態(tài)背景下,動與靜是相對的,我們可以研究問題中的變量,考慮當(dāng)變化的元素運動到特定的位置,使圖形變化為特殊圖形時,研究的量取得定值與最值.【例3】如圖,已知平行四邊形ABCD,AB=,BC=(>),P為AB邊上的一動點,直線DP交CB的延長線于Q,求AP+BQ的最小值.思路點撥設(shè)AP=,把AP、BQ分別用的代數(shù)式表示,運用不等式(當(dāng)且僅當(dāng)時取等號)來求最小值.⌒【例4】如圖,已知等邊△ABC內(nèi)接于圓,在劣弧AB上取異于A、B的點M,設(shè)直線AC與BM相交于K,直線CB與AM相交于點N,證明:線段AK和BN的乘積與M點的選擇無關(guān).思路點撥即要證AK·BN是一個定值,在圖形中△ABC的邊長是一個定值,說明AK·BN與AB有關(guān),從圖知AB為△ABM與△ANB的公共邊,作一個大膽的猜想,AK·BN=AB2,從而我們的證明目標(biāo)更加明確.注:只要探求出定值,那么解題目標(biāo)明確,定值問題就轉(zhuǎn)化為一般的幾何證明問題.【例5】已知△XYZ是直角邊長為1的等腰直角三角形(∠Z=90°),它的三個頂點分別在等腰Rt△ABC(∠C=90°)的三邊上,求△ABC直角邊長的最大可能值.思路點撥頂點Z在斜邊上或直角邊CA(或CB)上,當(dāng)頂點Z在斜邊AB上時,取xy的中點,通過幾何不等關(guān)系求出直角邊的最大值,當(dāng)頂點Z在(AC或CB)上時,設(shè)CX=,CZ=,建立,的關(guān)系式,運用代數(shù)的方法求直角邊的最大值.注:數(shù)形結(jié)合法解幾何最值問題,即適當(dāng)?shù)剡x取變量,建立幾何元素間的函數(shù)、方程、不等式等關(guān)系,再運用相應(yīng)的代數(shù)知識方法求解.常見的解題途徑是:(1)利用一元二次方程必定有解的代數(shù)模型,運用判別式求幾何最值;(2)構(gòu)造二次函數(shù)求幾何最值.學(xué)力訓(xùn)練1.如圖,正方形ABCD的邊長為1,點P為邊BC上任意一點(可與B點或C點重合),分別過B、C、D作射線AP的垂線,垂足分別是B′、C′、D′,則BB′+CC′+DD′的最大值為,最小值為.2.如圖,∠AOB=45°,角內(nèi)有一點P,PO=10,在角的兩邊上有兩點Q,R(均不同于點O),則△PQR的周長的最小值為.3.如圖,兩點A、B在直線MN外的同側(cè),A到MN的距離AC=8,B到MN的距離BD=5,CD=4,P在直線MN上運動,則的最大值等于.4.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為()A.1B.C.D.5.如圖,圓柱的軸截面ABCD是邊長為4的正方形,動點P從A點出發(fā),沿看圓柱的側(cè)面移動到BC的中點S的最短距離是()A.B.C.D.6.如圖、已知矩形ABCD,R,P戶分別是DC、BC上的點,E,F(xiàn)分別是AP、RP的中點,當(dāng)P在BC上從B向C移動而R不動時,那么下列結(jié)論成立的是()A.線段EF的長逐漸增大B.線段EF的長逐漸減小C.線段EF的長不改變D.線段EF的長不能確定7.如圖,點C是線段AB上的任意一點(C點不與A、B點重合),分別以AC、BC為邊在直線AB的同側(cè)作等邊三角形ACD和等邊三角形BCE,AE與CD相交于點M,BD與CE相交于點N.(1)求證:MN∥AB;(2)若AB的長為l0cm,當(dāng)點C在線段AB上移動時,是否存在這樣的一點C,使線段MN的長度最長?若存在,請確定C點的位置并求出MN的長;若不存在,請說明理由.(2002年云南省中考題)8.如圖,定長的弦ST在一個以AB為直徑的半圓上滑動,M是ST的中點,P是S對AB作垂線的垂足,求證:不管ST滑到什么位置,∠SPM是一定角.9.已知△ABC是⊙O的內(nèi)接三角形,BT為⊙O的切線,B為切點,P為直線AB上一點,過點P作BC的平行線交直線BT于點E,交直線AC于點F.(1)當(dāng)點P在線段AB上時(如圖),求證:PA·PB=PE·PF;(2)當(dāng)點P為線段BA延長線上一點時,第(1)題的結(jié)論還成立嗎?如果成立,請證明,如果不成立,請說明理由.10.如圖,已知;邊長為4的正方形截去一角成為五邊形ABCDE,其中AF=2,BF=l,在AB上的一點P,使矩形PNDM有最大面積,則矩形PNDM的面積最大值是()A.8B.12C.D.1411.如圖,AB是半圓的直徑,線段CA上AB于點A,線段DB上AB于點B,AB=2;AC=1,BD=3,P是半圓上的一個動點,則封閉圖形ACPDB的最大面積是()A.B.C.D.12.如圖,在△ABC中,BC=5,AC=12,AB=13,在邊AB、AC上分別取點D、E,使線段DE將△ABC分成面積相等的兩部分,試求這樣線段的最小長度.13.如圖,ABCD是一個邊長為1的正方形,U、V分別是AB、CD上的點,AV與DU相交于點P,BV與CU相交于點Q.求四邊形PUQV面積的最大值.14.利用兩個相同的噴水器,修建一個矩形花壇,使花壇全部都能噴到水.已知每個噴水器的噴水區(qū)域是半徑為l0米的圓,問如何設(shè)計(求出兩噴水器之間的距離和矩形的長、寬),才能使矩形花壇的面積最大?15.某住宅小區(qū),為美化環(huán)境,提高居民生活質(zhì)量,要建一個八邊形居民廣場(平面圖如圖所示).其中,正方形MNPQ與四個相同矩形(圖中陰影部分)的面積的和為800平方米.(1)設(shè)矩形的邊AB=(米),AM=(米),用含的代數(shù)式表示為.(2)現(xiàn)計劃在正方形區(qū)域上建雕塑和花壇,平均每平方米造價為2100元;在四個相同的矩形區(qū)域上鋪設(shè)花崗巖地坪,平均每平方米造價為105元;在四個三角形區(qū)域上鋪設(shè)草坪,平均每平方米造價為40元.①設(shè)該工程的總造價為S(元),求S關(guān)于工的函數(shù)關(guān)系式.②若該工程的銀行貸款為235000元,僅靠銀行貸款能否完成該工程的建設(shè)任務(wù)?若能,請列出設(shè)計方案;若不能,請說明理由.③若該工程在銀行貸款的基礎(chǔ)上,又增加資金73000元,問能否完成該工程的建設(shè)任務(wù)?若能,請列出所有可能的設(shè)計方案;若不能,請說明理由.16.某房地產(chǎn)公司擁有一塊“缺角矩形”荒地ABCDE,邊長和方向如圖,欲在這塊地上建一座地基為長方形東西走向的公寓,請劃出這塊地基,并求地基的最大面積(精確到1m2).參考答案思路點撥直徑、公切線、O2的特殊位置等,隱含豐富的信息,而連O2Ol必過A點,先求出∠DO2A的度數(shù).注:(1)兩圓相切或相交時,公切線或公共弦是重要的類似于“橋梁”的輔助線,它可以使弦切角與圓周角、圓內(nèi)接四邊形的內(nèi)角與外角得以溝通.同時,又是生成圓冪定理的重要因素.(2)涉及兩圓位置關(guān)系的計算題,常作半徑、連心線,結(jié)合切線性質(zhì)等構(gòu)造直角三角形,將分散的條件集中,通過解直角三角形求解.【例2】如圖,⊙Ol與⊙O2外切于點A,兩圓的一條外公切線與⊙O1相切于點B,若AB與兩圓的另一條外公切線平行,則⊙Ol與⊙O2的半徑之比為()A.2:5B.1:2C.1:3D.2:3思路點撥添加輔助線,要探求兩半徑之間的關(guān)系,必須求出∠COlO2(或∠DO2Ol)的度數(shù),為此需尋求∠CO1B、∠CO1A、∠BO1A的關(guān)系.【例3】如圖,已知⊙Ol與⊙O2相交于A、B兩點,P是⊙Ol上一點,PB的延長線交⊙O2于點C,PA交⊙O2于點D,CD的延長線交⊙Ol于點N.(1)過點A作AE∥CN交⊙Oll于點E,求證:PA=PE;(2)連結(jié)PN,若PB=4,BC=2,求PN的長.思路點撥(1)連AB,充分運用與圓相關(guān)的角,證明∠PAE=∠PEA;(2)PB·PC=PD·PA,探尋PN、PD、PA對應(yīng)三角形的聯(lián)系.【例4】如圖,兩個同心圓的圓心是O,AB是大圓的直徑,大圓的弦與小圓相切于點D,連結(jié)OD并延長交大圓于點E,連結(jié)BE交AC于點F,已知AC=,大、小兩圓半徑差為2.(1)求大圓半徑長;(2)求線段BF的長;(3)求證:EC與過B、F、C三點的圓相切.思路點撥(1)設(shè)大圓半徑為R,則小圓半徑為R-2,建立R的方程;(2)證明△EBC∽△ECF;(3)過B、F、C三點的圓的圓心O′,必在BF上,連OˊC,證明∠O′CE=90°.注:本例以同心圓為背景,綜合了垂徑定理、直徑所對的圓周角為直角、切線的判定、勾股定理、相似三角形等豐富的知識.作出圓中基本輔助線、運用與圓相關(guān)的角是解本例的關(guān)鍵.【例5】如圖,AOB是半徑為1的單位圓的四分之一,半圓O1的圓心O1在OA上,并與弧AB內(nèi)切于點A,半圓O2的圓心O2在OB上,并與弧AB內(nèi)切于點B,半圓O1與半圓O2相切,設(shè)兩半圓的半徑之和為,面積之和為.(1)試建立以為自變量的函數(shù)的解析式;(2)求函數(shù)的最小值.思路點撥設(shè)兩圓半徑分別為R、r,對于(1),,通過變形把R2+r2用“=R+r”的代數(shù)式表示,作出基本輔助線;對于(2),因=R+r,故是在約束條件下求的最小值,解題的關(guān)鍵是求出R+r的取值范圍.注:如圖,半徑分別為r、R的⊙Ol、⊙O2外切于C,AB,CM分別為兩圓的公切線,OlO2與AB交于P點,則:(1)AB=2;(2)∠ACB=∠OlMO2=90°;(3)PC2=PA·PB;(4)sinP=;(5)設(shè)C到AB的距離為d,則.學(xué)力訓(xùn)練1.已知:⊙Ol和⊙O2交于A、B兩點,且⊙Ol經(jīng)過點O2,若∠AOlB=90°,則∠AO2B的度數(shù)是.2.矩形ABCD中,AB=5,BC=12,如果分別以A、C為圓心的兩圓相切,點D在圓C內(nèi),點B在圓C外,那么圓A的半徑r的取值范圍.(2003年上海市中考題)3.如圖;⊙Ol、⊙O2相交于點A、B,現(xiàn)給出4個命題:(1)若AC是⊙O2的切線且交⊙Ol于點C,AD是⊙Ol的切線且交⊙O2于點D,則AB2=BC·BD;(2)連結(jié)AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,則OlO2=25cm;(3)若CA是⊙Ol的直徑,DA是⊙O2的一條非直徑的弦,且點D、B不重合,則C、B、D三點不在同一條直線上,(4)若過點A作⊙Ol的切線交⊙O2于點D,直線DB交⊙Ol于點C,直線CA交⊙O2于點E,連結(jié)DE,則DE2=DB·DC,則正確命題的序號是(寫出所有正確命題的序號).4.如圖,半圓O的直徑AB=4,與半圓O內(nèi)切的動圓Ol與AB切于點M,設(shè)⊙Ol的半徑為,AM的長為,則與的函數(shù)關(guān)系是,自變量的取值范圍是.5.如圖,施工工地的水平地面上,有三根外徑都是1米的水泥管兩兩相切摞在一起,則其最高點到地面的距離是()A.2B.C.D.6.如圖,已知⊙Ol、⊙O2相交于A、B兩點,且點Ol在⊙O2上,過A作⊙Oll的切線AC交BOl的延長線于點P,交⊙O2于點C,BP交⊙Ol于點D,若PD=1,PA=,則AC的長為()A.B.C.D.7.如圖,⊙Ol和⊙O2外切于A,PA是內(nèi)公切線,BC是外公切線,B、C是切點①PB=AB;②∠PBA=∠PAB;③△PAB∽△OlAB;④PB·PC=OlA·O2A.上述結(jié)論,正確結(jié)論的個數(shù)是()A.1B.2C.3D.48.兩圓的半徑分別是和r(R>r),圓心距為d,若關(guān)于的方程有兩個相等的實數(shù)根,則兩圓的位置關(guān)系是()A.一定內(nèi)切B.一定外切C.相交D.內(nèi)切或外切9.如圖,⊙Ol和⊙O2內(nèi)切于點P,過點P的直線交⊙Ol于點D,交⊙O2于點E,DA與⊙O2相切,切點為C.(1)求證:PC平分∠APD;(2)求證:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的長.10.如圖,已知⊙Ol和⊙O2外切于A,BC是⊙Ol和⊙O2的公切線,切點為B、C,連結(jié)BA并延長交⊙Ol于D,過D點作CB的平行線交⊙O2于E、F,求證:(1)CD是⊙Ol的直徑;(2)試判斷線段BC、BE、BF的大小關(guān)系,并證明你的結(jié)論.11.如圖,已知A是⊙Ol、⊙O2的一個交點,點M是OlO2的中點,過點A的直線BC垂直于MA,分別交⊙Ol、⊙O2于B、C.(1)求證:AB=AC;(2)若OlA切⊙O2于點A,弦AB、AC的弦心距分別為dl、d2,求證:dl+d2=O1O2;(3)在(2)的條件下,若dld2=1,設(shè)⊙Ol、⊙O2的半徑分別為R、r,求證:R2+r2=R2r2.12.已知半徑分別為1和2的兩個圓外切于點P,則點P到兩圓外公切線的距離為.13.如圖,7根圓形筷子的橫截面圓半徑為r,則捆扎這7根筷子一周的繩子的長度為.14.如圖,⊙Ol和⊙O2內(nèi)切于點P,⊙O2的弦AB經(jīng)過⊙Ol的圓心Ol,交⊙Ol于C、D,若AC:CD:DB=3:4:2,則⊙Ol與⊙O2的直徑之比為()A.2:7B.2:5C.2:3D.1:315.如圖,⊙Ol與⊙O2相交,P是⊙Ol上的一點,過P點作兩圓的切線,則切線的條數(shù)可能是()A.1,2B.1,3C.1,2,3D.1,2,3,4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論