版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
SurfaceTopography:MetrologyandProperties
PAPER?OPENACCESS
Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
Tocitethisarticle:AlexandraKaramitrouetal2022Surf.Topogr.:Metrol.Prop.10044001
Viewthe
articleonline
forupdatesandenhancements.
Youmayalsolike
UnravellingtheroleofironandmanganeseoxidesincolouringLateAntiqueglassbymicro-XANESandmicro-XRFspectroscopies
FrancescaGherardi,ClémentHole,EwanCampbelletal.
GeomagneticandgeoelectricalprospectionforburiedarchaeologicalremainsontheUpperCityofAmorium,aByzantinecityinmidwesternTurkeyYunusLeventEkinci,?alayanBalkaya,Ayselerenetal.
UnmannedAerialVehicle(UAV)DataAcquisitionforArchaeologicalSiteIdentificationandMapping
WHandayani,EAAyuningtyas,FSCandraRetal.
ThiscontentwasdownloadedfromIPaddress11on22/04/2024at16:36
Surf.Topogr.:Metrol.Prop.10(2022)044001
/10.1088/2051-672X/ac9492
OPENACCESS
RECEIVED
5February2022
REVISED
25August2022
ACCEPTEDFORPUBLICATION
23September2022
PUBLISHED
3October2022
Originalcontentfromthisworkmaybeusedunderthetermsofthe
Creative
CommonsAttribution4.0
licence
.
Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.
PAPER
Towardstheuseofarti?cialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites
AlexandraKaramitrou
1
,?
,FraserSturt
1
,PetrosBogiatzis
2
andDavidBeresford-Jones
3
1UniversityofSouthampton,DepartmentofArchaeology,UnitedKingdom
2OceanandEarthScience,NationalOceanographyCentreSouthampton,UniversityofSouthampton,UnitedKingdom
3UniversityofCambridge,DepartmentofArchaeology,UnitedKingdom
?Authortowhomanycorrespondenceshouldbeaddressed.
E-mail:
a.karamitrou@soton.ac.uk
Keywords:archaeology,machinelearning,arti?cialintelligence,convolutionalneuralnetworks,segnetSupplementarymaterialforthisarticleisavailable
online
AbstractWhileremotesensingdatahavelongbeenwidelyusedinarchaeologicalprospectionoverlargeareas,thetaskofexaminingsuchdataistimeconsumingandrequiresexperiencedandspecialistanalysts.However,recenttechnologicaladvancesinthe?eldofarti?cialintelligence(AI),andinparticulardeeplearningmethods,openpossibilitiesfortheautomatedanalysisoflargeareasofremotesensingdata.Thispaperexaminestheapplicabilityandpotentialofsuperviseddeeplearningmethodsforthedetectionandmappingofdifferentkindsofarchaeologicalsitescomprisingfeaturessuchaswallsandlinearorcurvilinearstructuresofdifferentdimensions,spectralandgeometricalproperties.Ourworkdeliberatelyusesopen-sourceimagerytodemonstratetheaccessibilityofthesetools.OneofthemainchallengesfacingAIapproacheshasbeenthattheyrequirelargeamountsoflabeleddatatoachievehighlevelsofaccuracysothatthetrainingstagerequiressigni?cantcomputationalresources.Ourresultsshow,however,thatevenwithrelativelylimitedamountsofdata,simpleeight-layer,fullyconvolutionalnetworkcanbetrainedef?cientlyusingminimalcomputationalresources,toidentifyandclassifyarchaeologicalsitesandsuccessfullydistinguishthemfromfeatureswithsimilarcharacteristics.Byincreasingthenumberoftrainingsetsandswitchingtotheuseofhigh-performancecomputingtheaccuracyoftheidenti?edareasincreases.Weconcludebydiscussingthefuturedirectionsandpotentialofsuchmethodsinarchaeologicalresearch.
Introduction
Analysisofaerialimageryrevolutionizedarchaeologyintheearlytwentiethcentury,exponentiallyincreas-ingthenumberofknownsites,allowinglargeareastoberapidlysurveyedandgivingaccesstoremoteregions(Reeves
1936
,BewleyandRaczkowski
2002
;Mossunetal
2013
;Lambers
2018
).Forexample,asearchforscienti?cpublicationsrelatedwithArchae-ologyandRemoteSensingusingtheDimensionsscienti?cresearchdatabasereturns2,732articleson2013,5,172on2018and14,323in2021(
https://app.
dimensions.ai
;accessedinMay2022).
Withtheintroductionofawiderrangeofairborne(i.e.,mannedaircraftanddrones)andspace-baseddata,includingpassivehighspatialresolutionopticalsensors,multispectralandhyperspectralsensors,light
detectionandranging(LIDAR),Syntheticapertureradar(SAR),thermalsensorsandgeophysicalimages,theamountofdataavailabletoarchaeologistshasalsoincreasedexponentiallyinrecentyears(e.g.,Chietal
2016
;Tamiminiaetal
2020
).Thesedataholdsig-ni?cantpotentialtotransformourunderstandingofthearchaeologicalrecord,butalsoposeasigni?cantchallengewithregardstotheamountoftimeanalysiswouldtakeusingtraditionalhuman-ledimageanaly-sismethods.
Arti?cialIntelligence(AI)offersapotentialbypasstothisbottleneckandthereforesubstantiallyreducetherequiredhumanlabor.AIdescribestheabilityofcomputerstoperformtasksandreachingdecisionsthroughlearningeitherdirectlyfromthedata(unsu-pervisedmethods)orfrompastexperiencewherethecorrectoutcomeisprovided(supervisedmethods),
?2022TheAuthor(s).PublishedbyIOPPublishingLtd
Surf.Topogr.:Metrol.Prop.10(2022)044001
AKaramitrouetal
PAGE
10
imitatinghumanintelligence(e.g.,Dey,
2016
;Copeland
2020
).
Overthepastthreedecades,applicationsofmachinelearning(ML)methodshaveseensigni?cantincreaseinArchaeology.MLalgorithmssuchassup-portvectormachine(CortesandVapnik
1995
;Kaoetal
2004
)randomforests(Ho
1995
;Ho
1998
),K-means(Caoetal
2009
;JinandHan,
2011
;Qietal
2017
)andothersimilarapproacheshavebeenwidelyadoptedwithconsiderablesuccessindetectingorclas-sifyingarchaeologicalsites,andartifacts(e.g.,KintighandAmmerman
1982
;Baxter
2009
;MenzeandUr
2012
;Floresetal
2019
;Orengoetal
2020
).Thesemethods,oftenreferredtoastraditionalMLalgo-rithms,requirethecarefulselectionofinputfeatures(e.g.,variousspectralindicesinsatelliteimaging)byhuman-experts,thatareimportantfortheoutcome.Thenthroughaniterativeoptimizationprocessbytheinputofexemplardatathealgorithmistrainedbaseduponmultivariatestatisticsandprogressivelyimprovesitsperformance.Sinceitrequiresthedeter-minationandthepriorcalculationofarangeofpossi-blestatisticallysigni?cantinputfeatures,itinevitablysuffersfromalevelofbiasasalthoughthetrainingprocedurecanpointoutwhichfromthefeaturesarestatisticallyinsigni?cant,itcannotsuggest,orextractfeaturesdifferentthantheprovidedones.Also,therelativelylimitednumberofthefeaturesinmostappli-cationsoftencannotfullydescribethetargetsatdifferentsituationsorenvironmentalconditions.Therefore,theapplicabilityofthesealgorithmsisoftenlimitedtospeci?ccasesandrestrictstheidenti?cationtofeatureswithlimitedspectralandgeometricvariations.
Intheearly2000sanewmachinelearningtechnol-ogyemergedknownasDeepLearning(DL)basedonArti?cialNeuralNetworks(ANN),andinthecaseofimageapplications,ConvolutionalNeuralNetworks(CNNs).ThisnewtechnologywaslargelybasedontheseminalworkofFukushima(
1980
)aswellasHubelandWiesel(
1959
)thatintroducedthe‘neocognitron’(Fukushima
1980
;
1983
;2003)andestablishedtheuseofconvolutionalanddown-samplinglayers.In1986,RinaDecherwasoneofthe?rsttousetheterm‘deeplearning’tothemachinelearningcommunity,inwhich‘deep’wasusedtodescribetheuseofmultiplelayersinanetwork.Later,Waibel(
1987
)proposedthetimedelayneuralnetwork(TDNN),oneofthe?rstconvolutionalnetworksfollowedbyLeCunetal(
1989
)whoappliedthatinahandwrittencharacterrecognitionproblemusinga7-levelConvolutionalNeuralNetowork(CNN),calledLeNet-5(LeCunetal
1998
).Asigni?cantadvantageofdeeplearningmeth-odsisthatthefeatureextractionandselectionstageisperformedbythelearningalgorithmautomaticallyandnotbyaperson.Yet,thisusuallyrequiressig-ni?cantamountsoflabeleddataandconsiderablecomputationalresourcesforthetrainingprocess.TheutilizationofGPUsinthetrainingprocesswasthe
turningpointforusingCNNsinimagerecognition.Inthe2012ImageNetcompetition,the?rstCNNeversubmitted,namedAlexNet(Krizhevskyetal
2012
),wonthecompetition.ThetrainingofAlexNetusedoveronemillionlabeledimagesabout~1000objectcategoriesandtook~6daysusing2GPUs(Krizhevskyetal
2012
).Sincethen,deepneuralnetworkshavewon
manyinternationalpatternrecognitioncompetitionsandhaveattractedbroadattention,byoutperforminglegacymachinelearningmethodsandhandlingbetterlargeamountsofdatawithminimumuserinterven-tion(Schmidhuber
2015
).Assuch,theyoffercon-siderablepotentialforarchaeology.
Amongthecommontasksassignedtodeeplearn-ingCNNnetworksareimageclassi?cation,objectdetection,andsemanticsegmentation.Classi?cationisabasicprocessroutinelyperformedinarchaeologywiththeobjectiveofclassifyinggroupsofimagesthatsharesomecommonfeatures,orobjectsintooneofanumberofprede?nedclasses.Forexample,AImeth-odshavebeenusedtoanalyzeuse-wearonlithictools(e.g.,VandenDries
1998
)andtoclassifyandidentifytypesofpottery(e.g.,H?rretal
2008
;Anichinietal,
2021
;PawlowiczandDownum
2021
).CaspariandCrespo(
2019
),usedanobject-detectionbasedmethodtoidentifyIronAgeburialmoundsinaerialimagery.Morerecently,Agapiouetal(
2021
)appliedtheobjectdetectionmethodtodetectsurfaceceramicsindroneimages.Finally,semanticsegmentationalgorithmsattempttoanalyzeimagesfurther,bypartitioningthemintosemanticallymeaningfulpartsandafter-wardsbyclassifyingeachpartintooneofthe‘X’pre-determinedclassesi.e.,interpretableimageregionsforinstance,archaeologicalsites,regionsofvegetation,modernstructuresandothers(e.g.,Garcia-Garciaetal
2018
;Minaeeetal
2020
).Semanticsegmentationoperatesatpixel-levelinthesensethateachpixelofanimageislabeledaccordingtotheclassitbelongsto.Thismakessemanticsegmentationamuchmorecomplicatedandcomputationallyintensivetask,yetitcanproducemoreinformativeanddetailedresultscomparedtoclassi?cationandobjectidenti?cation(e.g.,Kendalletal
2015
;Garcia-Garciaetal
2018
;Minaeeetal
2020
).ThevalueofthisapproachforgeophysicalanalysishasbeendemonstratedintheworkofKü?ükdemirciandSarris’s(
2020
)usingground-penetratingradarimages.
Forallthissuccess,onlyrecentlytherehavebeenlimitedyetincreasingworkadoptingCNNapproachesfortheautomateddetectionofarchaeologicalsites(Trieretal
2018
;CaspariandCrespo,
2019
;Kazimietal
2019
;Lambersetal
2019
;Rayneetal
2020
;Somraketal
2020
;Soroushetal
2020
;Bonhageetal
2021
;Verschoof-vanderVaartandLandauer
2021
)fromEarthobservation(EO)data.Inpart,thisisduetotheneedforanabundanceoflabeleddatatoenabletheCNNtoaccuratelyidentifydifferentsignatures.Forexample,ImageNet,anopenlyavailablevisualdatabasedesignedforuseineverydaycontemporary
Figure1.Demonstrationoftheconvolutionofanimagewithanedgedetection?lter.Ontheleftistheinitialimage,inthemiddleisanedgedetection?lterandontherightistheresultedimage,whichshowstheedgesoftheinitialimage.
objectrecognitioncomprises14,197,122images(Rus-sakovskyetal
2015
).Itisthisvolumeoflabelleddata,whichhasenabledrapidadvancesintheuseofCNNinday-to-daytasks.Inarchaeologyhowever,similarlytoother?elds,theamountoffreelyavailable,properlylabeleddataiscurrentlylimited.Furthermore,onlinesharingofsuchdataisoftenrestrictedbycon-?dentialityissuesthatariseoftenfromlocallegisla-tion,relatedwiththeefforttoprotectthesesitesfromlooting.
Inthispaper,weofferarouteforwardbyusingopenlyavailablesatellitehighspatialresolutionima-geryandthroughexaminingtwoneuralnetworkarchitectures:TheSegNet(Kendalletal
2015
),adeepconvolutionalencoder-decoderarchitectureforrobustsemanticpixel-wiselabeling;andacustom8-layerCNNdesignedforthisresearch(SimpleNet).Wealsoopen-upaccesstothesetoolsthroughprovid-ingapackagedapplication(supplementaryinforma-tion)allowingreaderstoruntheirownanalysis,helpingthemtoevaluatethestrengthsandweaknessesofthisnetworkandbeginamoreopenandinclusiveconversationabouttheiruseinarchaeology.
Convolutionalneuralnetworks(CNN)
Inthissectionwebrie?yintroducethefundamentalconceptsofCNNs.Althoughamoreextensivepre-sentationofCNNsisbeyondthescopeofthiswork,theinterestedreadercan?nddetailedintroductionsfocusingonvariousaspectsofCNNsinseveralworksincluding,Nielsen(
2015
);Wu(
2017
);Alzubaidietal(
2021
);Lietal(
2021
);andUlkuandAkagün-düz(
2022
).
DeeplearningalgorithmsareatypeofmachinelearningtechniquethatusesANNofseverallayersinahierarchicalarchitecturetoenablemachinestopro-cessdatainanonlinearmanner.Arti?cialneuralnet-worksconsistofcircuitsofsimple,yethighlyinterconnected,nodestoselectivelytransmitsignalsinaprocessthatmimicsthebiologicalneurons(Hop?eld
1982
),therebysimulatingthewaybiologicalneuralnetworkswork.Thesenodesareorganizedin
layerswhichprocessinformationbyoutputtingdynamicstateresponsestoexternalinputs(commonlyaresponsefromapreviouslayer).DataareintroducedtotheANNthroughaninputlayerandresultsdeliv-eredwitha?naloutputlayer.Allintermediatelayersaretermedhiddenlayers,whichcarryoutallthepro-cessing.Thelargerthenumberofhiddenlayers,the‘deeper’thenetwork,enablingtheidenti?cationpro-gressivelyofmorecomplexpatternsanddetails.Forexample,the?rstlayermaylearnrecognizingedgesinanimage,thesecondshapes,thethirdobjectsandsoon.
Informationispassedbetweenlayersthroughcon-
nectionsthatarecharacterizedbyweightsandbiases,sothatthereceivedtotaloutputcorrespondstoaweightedsumofindividualnode-inputs,plussomebias.Theresultoutputmayormaynotexceedathresholdde?nedbyapre-setactivationfunctionsuchasasigmoidormostcommonlyarecti?edlinearacti-vationfunction(ReLU;seebelow),essentiallydecidingifthisinformationshouldbetransmittedtothenextlayer(forwardpassed),asitisorinamodulatedform,orrather?lteredout.Theoptimalvaluesofeachweightandbiasarede?nedbythetrainingofthenet-work:anon-linearoptimizationprocesswherebyacostfunctionrepresentingthedistancebetweentrain-inglabeleddataandthatpredictedbynetworkresultsisminimized.
Thenumberofrequireddeeplayerswithinthe
network,andthereforeindirectlythenumberofunknowns(i.e.,parametersthataretobetunnedthroughthetraining),dependsonthecomplexityofthepatternstobeidenti?edandtheamountoflabeleddata.Atpresent,alimitednumberoflabelledimagesforarchaeologyimposesarequirementforcarefuldesignoflearningnetworks,keepingthenumberoflayersandconnectionslowenoughtoensurethattheoptimizationproblemofnetworktrainingisnotunder-determinedi.e.,thenumberofunknownpara-metersexceedthenumberofdataandpriorcon-straintsthatareusedtoregularize/stabilizethetrainingandreducethegeneralizationerror(over-?tting)(e.g.,Goodfellowetal
2016
).
Figure2.Architectureofthe8-layerconvolutionalneuralnetwork.
Table1.ArchaeologicalsitesinPeruusedtotrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Period
LaCentinela(ChinchaValley)
?13.450385,?76.171092
Inca(AD1476–1532)LateIntermediate(AD1000–1476AD)
Cahuachi(NazcaValley)
?14.818241,?75.117462
EarlyIntermediate(c.200BC–AD600)
Caral(SupeValley)
?10.890938,?77.521858
LatePreceramic(c.3000–1800BC)
TamboColorado(PiscoValley)
?13.704619,?75.829431
Inca(AD1476–1532)
Table2.Additionalarchaeologicalsites(areas)inPerutofurthertrainthealgorithm.
Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Periods
Various(LowerIcaValley)
?14.614319,?75.614994
Various(1800BC–AD1534)
NazcaGeoglyphs(PampadeSanJosé,NascaValley)
?14.696486,?75.178422
EarlyIntermediate(200BC–AD600AD)
CerroSechín(CasmaValley)
?9.480703,?78.258997
InitialPeriod(1600BC)
Hereweexaminetwodifferent,supervised,fullyconvolutional,neuralnetworks:onebasedonthearchitectureofSemanticSegmentationcalledSegNet(Kendalletal
2015
;Badrinarayananetal
2017
);andtheotheracustom8-layernetworkdevelopedbytheauthorscalledSimpleNet.Botharefullyconvolutionalneuralnetworks,acategoryofnetworkconsistingoflocallyconnectedlayerssothateachneurononlyreceivesinputfromasmalllocalsubgroupofthepixelsintheinputimage.SuchLayerscanperformconvolu-tion/deconvolution,pooling(i.e.,asample-baseddis-cretizationprocessthateffectivelydown-samplestheimage)andup-sampling,butnotcontainingfullycon-nectedlayers,andthusrequiringsigni?cantlylessmemoryandcomputationalpower(Longetal
2015
).SemanticsegmentationalgorithmshavebeenusedwidelyinclassifyingfeaturesinvariousremotesensingimagesincludinghighresolutionGoogleEarthimages(Yuetal
2021
).Additionally,thecustom8-layernet-workwasdesignedtobeimplementedforthelownumberoflabeleddatausedinthiswork.Inthefol-lowingsections,wedescribethearchitectureandfunc-tionalityofthesetwonetworks.
SegNet
SegNetisadeepfullyconvolutionalneuralnetworkthatsegmentstheimagebyclassifyingeachpixelindependently.Itconsistsofanencodernetworkwith13layers,eachdesignedforobjectclassi?cation.Eachlayerisconvolvedusingasetof2D?lterstoproduceasetoffeaturemapsofincreasingcomplexityasdescribedpreviously.Thesemapsarelaterbatchnormalizedi.e.,tohaveameanoutputcloseto0andtheoutputstandarddeviationcloseto1.Next,aReLUactivationfunctionisappliedfollowedbydown-samplingusingamaxpoolinglayerwitha2×2nonoverlappingwindow(Kendalletal
2015
;Badrinaraya-nanetal
2017
).TheReLUactivationfunctionisalinearfunctionthatoutputstheinputifitispositive,orelse,outputszero(Haraetal
2015
).Themaxpoolingfunctioncalculatesthemaximum,ineachpatchofeachfeaturemap(Chollet
2017
).Inthe?nallayertheresultingoutput,fromthepreviousstep,issub-sampledbyafactorof2whiletheboundaryinforma-tionisalsostored.Thisiscrucialasduringthesuccessivedown-samplingoperationsthehighfre-quencydetailsoftheimagearelessenedresultingin
Figure3.Asampleofthe2000Trainingimages,ofsize256×256×3pixels(GoogleEarthimagery),fromvariousarchaeologicalareasaroundPeru.Thetoprowshowstheinitialimagesandthebottomrowthelabeledimages.
blurryandinaccurateboundaries.However,bound-ariesareimportantinsmallobjectsandstructuressuchasbuildings,cropmarksetcandbystoringthisinformationitcanberetrievedduringthedecodingstage.
Thenetworkconsistsof13decoderlayerseachonecorrespondingtoitsrespectiveencoderlayer.Theroleoftheencoderlayersistosemanticallyprojectthelowerresolutionfeaturesextracted(learnt)bytheencoder,ontothehigherresolutionimagespacetogetadenseclassi?cation,i.e.,aclassi?cationforeachpixelintheoriginalsizedimage.Eachdecoderlayerpro-ducesdensefeaturemaps(images)byup-samplingitsinputfeaturemaps(theoutputofthepreviouslayer)usingthememorizedmax-poolingindicesproducedonthepreviousstage.Thenconvolutionisappliedusingatraineddictionaryof?lterstoproducedensefeaturemaps.The?naldecoderoutputisfedintoaSoftMaxclassi?er,i.e.,alayerthatassignseachpixelindependentlytoaclassaccordingtoaprobabilityscoreamongthecandidateclasses(e.g.,Nielsen
2015
;Alzubaidietal
2021
).
2.2.Acustom8-layerconvolutionalneuralnetwork
(SimpleNet)
Sincetheamountoflabeleddataavailableforarchae-ologyislimited,weconstructedacustom8-layerconvolutionalneuralnetwork(SimpleNet),basedontheSegNetarchitecturewiththeaimofkeepingthenumberoflayersandtrainableparametersaslowaspossiblewhileachievingadequatelyaccurateresults.The?rstlayerisanimageinputlayerthatreceivesRGBimages.Thenextlayerisaconvolutionallayerwith32trainable?ltersappliedinanon-overlappingmovingwindowofsize5×5andwithstride1.Strideshows
howmuchthe?ltershiftsaroundtheinputvolume(inourcaseitshiftsbyoneunit)whilethe?lterapproximatestheLaplacian(i.e.,a2Dsecondspatialderivative)oftheGaussianoperatorandessentiallywhenconvolvedwithanimagederivesasanoutputanapproximationofitssecondspatialderivative.Thismeansthatinregionswheretheimagehasconstantintensitythe?lter’sresponsewillbezero.Inregionswheretheintensity(i.e.,pixelbrightness)changesrapidly,however,suchasattheedgesofanobject,the?lter’sresponseyieldshighamplitudes(?gure
1
).
The?lterscanbeconceivedofas2Dimageswhose
shapeandcolorareadjustedthroughthetrainingpro-cesstooptimallyexpressdifferentfeaturesofthedata(e.g.,?gure
2
).Next,arecti?edlinearunit(ReLU)isappliedfollowedbyamax-poolingwitha2×2nonoverlappingwindowwithstride2andapaddingwith0’s.Thisisthemostcommoncon?gurationasitdis-cardsthe75%oftheactivationsinaninputimageduetodown-samplingby2inbothwidthandheight.Fol-lowingthis,atransposeconvolutionisappliedwiththesamenumberof?ltersandawindowwith4×4sizeandstride2.Likewise,thisisacommoncon?g-uration,asthedivisibilityofthewindowsizebythestridemitigatestheproblemofcheckerboardartifactsintheup-sampledimage(e.g.,Odenaetal
2016
).Thesixthlayerisanotherconvolutionallayerof1×1windowsizeandstride1.Then,aSoftMaxclassi?erisapplied,tothe?naloutputfromthepreviouslayer,toassigneachpixelintoaclass.Finally,theimageisseg-mentedintotheassignedclassesbyaclassi?cationlayerthatcalculatestheclassweighedcross-entropyloss(e.g.,Bishop
2006
).The8-layerconvolutionalneuralnetworktechniqueisillustratedin?gure
2
.
Figure4.Histogramillustratingthenumberofpixelsusedineachofthe4classesfortheD500datasetwithorangecolorandfortheD2000datasetwithbluecolor.
Trainingandoptimisation
Data
Weusedopenlyavailablehigh-resolutionimagesfromGoogleEarthofarchaeologicalsitesinPeruasatrainingsetforbothnetworks.Thisgeographicalregionwaschosenforitscontinueddiscoveryofnewsitesusingremotelysenseddata(Ruggles
2015
;Bikoulisetal
2018
;CignaandTapete
2018
)andtheavailabilityofdatafrompreviouslarge-scalearchae-ologicalterrestrialsurveysforevaluationpurposes.
Initially,welabeled500imagesfrom4differentarchaeologicalsites,(table
1
).AsmallpartoftheTamboColoradoarchaeologicalsitewasthenusedtotrainthealgorithmandalargerareaofthesamesitefortesting.
Later,weaugmentedtheoriginal500imageswithafurther1500fromwiderarchaeologicalareasandsitesacrossPerutofurthertrainthealgorithm(table
2
)andcheckitsperformanceasthenumberoflabeleddataincrease.Theseadditionalimagesconsistmostlyofgeoglyphs(usuallylinearfeatures)markedinopendesertpampaenvironments.Figure
3
showssomesamplesoflabeledimagesusedinthiswork.
OptimisationprocessThedatawerelabelledwiththeImageLabelerprograminMatlab9.6usingfourdifferentclasses:‘archaeologi-cal’,‘modern’,‘vegetation’and‘background’.As‘archaeological’weincludedeverytargetofarchae-ologicalinterest,regardlessofshape,condition,color,periodetcWelabeledlinear,rectilinear,andcircularfeaturesthatwereclearlyvisibleintheGoogleEarthimagery,correspondingtoalargevarietyofarchae-ologicalfeatures.Weusedsuchbroadterminologybecausethetargetofthisworkwastofurtherincreasethenumberoftrainingimagesavailabletousersin
Table3.OptimalsetofparametersforSegNet,8-layerD500andD2000networks.
Parametername Value
Gradientdecayfactor 0.9000
Squaredgradientdecayfactor 0.9990Epsilon 1e-08
Initiallearningrate 1e-04(D500)and1e-03(D2000)
Dropratefactor 0.4
Dropperiod 5
L2-regularizationparameter 1e-09Gradientthresholdmethod UsingtheL2-normMaxepochs 30
Minibatchsize 5(D500)and15(D2000)
Shuf?e Ateveryepoch
future,withsub-classi?cationopenasanoptiontothosewhowishtomakeuseofthedataset.As‘modern’welabeledmodernstructuressuchasmodernbuild-ingsandvehicles.‘Vegetation’incorporatesareasofgrass,plants,andtrees.Finally,as‘background’weclassi?edeverythingelse,suchassoil,non-pavedroads,and?eldswithoutvegetation.Imagesintheinitialsetof500weredenotedasD500,andinthelarger2000setasD2000.Imagesforthesites/areasofinterestwereextractedfromGoogleEarthinRGB(Red,Green,Blue)asjpg?les.Ourgoal,istotrainanalgorithmtousehighresolution,freelyavailableGoogleEarthimages.Unfortunately,GoogleEarthdoesnotproviderawimagesthereforewehavetorelyonthealreadyprocessedimagesthataremadeavailablethroughtheGoogleEarthapplication.Itshouldbenotedherethatatpresent,thehigh-resolutionimagesinGoogleEarthapplicationarenotavailableinGoogleEarthEngineandthereforeisnotpossibletousethisenvironmenttotraindataset.
Figure5.SegmentationofthearchaeologicalsiteofTamboColoradowiththe3trainednetworks,(a)GoogleEarth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版交通設施地形圖保密及規(guī)劃合同3篇
- 二零二五版建筑工程施工圖紙審查招標投標合同書3篇
- 二零二五年度花展工程花卉品種研發(fā)與專利申請合同3篇
- 二零二五年度綠色建筑項目采購合同3篇
- 二零二五版XX個人商業(yè)秘密保護合同樣本3篇
- 二零二五年度私人墓地購置與墓園墓碑雕刻人才培養(yǎng)合同3篇
- 二零二五年度金融機構貸款擔保與信用管理合同3篇
- 二零二五版家庭水電維修與改造兼職合同3篇
- 二零二五版廢舊電線電纜回收與資源化利用合同3篇
- 二零二五年度食品行業(yè)環(huán)境保護設施租賃合同2篇
- DISC性格與能力測試題及答案解析
- 年產12萬噸裝配式智能鋼結構項目可行性研究報告模板-立項備案
- TB 10106-2023鐵路工程地基處理技術規(guī)程
- 三年級下冊綜合實踐活動教學設計- 嶺南水果|粵教版 52張
- 滬教版數學六年級(上)第二章分數課課練和單元練習卷及參考答案
- 承包意向書2024年
- 小學心理健康教師資格考試面試2024年下半年試題與參考答案
- (正式版)QC∕T 1206.2-2024 電動汽車動力蓄電池熱管理系統(tǒng) 第2部分:液冷系統(tǒng)
- (正式版)CB∕T 4550-2024 船舶行業(yè)企業(yè)安全設備設施管理規(guī)定
- 完整版肺癌護理查房課件
- 正規(guī)光伏屋頂租賃合同
評論
0/150
提交評論