利用人工智能深度學習網絡進行考古遺址檢測_第1頁
利用人工智能深度學習網絡進行考古遺址檢測_第2頁
利用人工智能深度學習網絡進行考古遺址檢測_第3頁
利用人工智能深度學習網絡進行考古遺址檢測_第4頁
利用人工智能深度學習網絡進行考古遺址檢測_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

SurfaceTopography:MetrologyandProperties

PAPER?OPENACCESS

Towardstheuseofartificialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites

Tocitethisarticle:AlexandraKaramitrouetal2022Surf.Topogr.:Metrol.Prop.10044001

Viewthe

articleonline

forupdatesandenhancements.

Youmayalsolike

UnravellingtheroleofironandmanganeseoxidesincolouringLateAntiqueglassbymicro-XANESandmicro-XRFspectroscopies

FrancescaGherardi,ClémentHole,EwanCampbelletal.

GeomagneticandgeoelectricalprospectionforburiedarchaeologicalremainsontheUpperCityofAmorium,aByzantinecityinmidwesternTurkeyYunusLeventEkinci,?alayanBalkaya,Ayselerenetal.

UnmannedAerialVehicle(UAV)DataAcquisitionforArchaeologicalSiteIdentificationandMapping

WHandayani,EAAyuningtyas,FSCandraRetal.

ThiscontentwasdownloadedfromIPaddress11on22/04/2024at16:36

Surf.Topogr.:Metrol.Prop.10(2022)044001

/10.1088/2051-672X/ac9492

OPENACCESS

RECEIVED

5February2022

REVISED

25August2022

ACCEPTEDFORPUBLICATION

23September2022

PUBLISHED

3October2022

Originalcontentfromthisworkmaybeusedunderthetermsofthe

Creative

CommonsAttribution4.0

licence

.

Anyfurtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthetitleofthework,journalcitationandDOI.

PAPER

Towardstheuseofarti?cialintelligencedeeplearningnetworksfordetectionofarchaeologicalsites

AlexandraKaramitrou

1

,?

,FraserSturt

1

,PetrosBogiatzis

2

andDavidBeresford-Jones

3

1UniversityofSouthampton,DepartmentofArchaeology,UnitedKingdom

2OceanandEarthScience,NationalOceanographyCentreSouthampton,UniversityofSouthampton,UnitedKingdom

3UniversityofCambridge,DepartmentofArchaeology,UnitedKingdom

?Authortowhomanycorrespondenceshouldbeaddressed.

E-mail:

a.karamitrou@soton.ac.uk

Keywords:archaeology,machinelearning,arti?cialintelligence,convolutionalneuralnetworks,segnetSupplementarymaterialforthisarticleisavailable

online

AbstractWhileremotesensingdatahavelongbeenwidelyusedinarchaeologicalprospectionoverlargeareas,thetaskofexaminingsuchdataistimeconsumingandrequiresexperiencedandspecialistanalysts.However,recenttechnologicaladvancesinthe?eldofarti?cialintelligence(AI),andinparticulardeeplearningmethods,openpossibilitiesfortheautomatedanalysisoflargeareasofremotesensingdata.Thispaperexaminestheapplicabilityandpotentialofsuperviseddeeplearningmethodsforthedetectionandmappingofdifferentkindsofarchaeologicalsitescomprisingfeaturessuchaswallsandlinearorcurvilinearstructuresofdifferentdimensions,spectralandgeometricalproperties.Ourworkdeliberatelyusesopen-sourceimagerytodemonstratetheaccessibilityofthesetools.OneofthemainchallengesfacingAIapproacheshasbeenthattheyrequirelargeamountsoflabeleddatatoachievehighlevelsofaccuracysothatthetrainingstagerequiressigni?cantcomputationalresources.Ourresultsshow,however,thatevenwithrelativelylimitedamountsofdata,simpleeight-layer,fullyconvolutionalnetworkcanbetrainedef?cientlyusingminimalcomputationalresources,toidentifyandclassifyarchaeologicalsitesandsuccessfullydistinguishthemfromfeatureswithsimilarcharacteristics.Byincreasingthenumberoftrainingsetsandswitchingtotheuseofhigh-performancecomputingtheaccuracyoftheidenti?edareasincreases.Weconcludebydiscussingthefuturedirectionsandpotentialofsuchmethodsinarchaeologicalresearch.

Introduction

Analysisofaerialimageryrevolutionizedarchaeologyintheearlytwentiethcentury,exponentiallyincreas-ingthenumberofknownsites,allowinglargeareastoberapidlysurveyedandgivingaccesstoremoteregions(Reeves

1936

,BewleyandRaczkowski

2002

;Mossunetal

2013

;Lambers

2018

).Forexample,asearchforscienti?cpublicationsrelatedwithArchae-ologyandRemoteSensingusingtheDimensionsscienti?cresearchdatabasereturns2,732articleson2013,5,172on2018and14,323in2021(

https://app.

dimensions.ai

;accessedinMay2022).

Withtheintroductionofawiderrangeofairborne(i.e.,mannedaircraftanddrones)andspace-baseddata,includingpassivehighspatialresolutionopticalsensors,multispectralandhyperspectralsensors,light

detectionandranging(LIDAR),Syntheticapertureradar(SAR),thermalsensorsandgeophysicalimages,theamountofdataavailabletoarchaeologistshasalsoincreasedexponentiallyinrecentyears(e.g.,Chietal

2016

;Tamiminiaetal

2020

).Thesedataholdsig-ni?cantpotentialtotransformourunderstandingofthearchaeologicalrecord,butalsoposeasigni?cantchallengewithregardstotheamountoftimeanalysiswouldtakeusingtraditionalhuman-ledimageanaly-sismethods.

Arti?cialIntelligence(AI)offersapotentialbypasstothisbottleneckandthereforesubstantiallyreducetherequiredhumanlabor.AIdescribestheabilityofcomputerstoperformtasksandreachingdecisionsthroughlearningeitherdirectlyfromthedata(unsu-pervisedmethods)orfrompastexperiencewherethecorrectoutcomeisprovided(supervisedmethods),

?2022TheAuthor(s).PublishedbyIOPPublishingLtd

Surf.Topogr.:Metrol.Prop.10(2022)044001

AKaramitrouetal

PAGE

10

imitatinghumanintelligence(e.g.,Dey,

2016

;Copeland

2020

).

Overthepastthreedecades,applicationsofmachinelearning(ML)methodshaveseensigni?cantincreaseinArchaeology.MLalgorithmssuchassup-portvectormachine(CortesandVapnik

1995

;Kaoetal

2004

)randomforests(Ho

1995

;Ho

1998

),K-means(Caoetal

2009

;JinandHan,

2011

;Qietal

2017

)andothersimilarapproacheshavebeenwidelyadoptedwithconsiderablesuccessindetectingorclas-sifyingarchaeologicalsites,andartifacts(e.g.,KintighandAmmerman

1982

;Baxter

2009

;MenzeandUr

2012

;Floresetal

2019

;Orengoetal

2020

).Thesemethods,oftenreferredtoastraditionalMLalgo-rithms,requirethecarefulselectionofinputfeatures(e.g.,variousspectralindicesinsatelliteimaging)byhuman-experts,thatareimportantfortheoutcome.Thenthroughaniterativeoptimizationprocessbytheinputofexemplardatathealgorithmistrainedbaseduponmultivariatestatisticsandprogressivelyimprovesitsperformance.Sinceitrequiresthedeter-minationandthepriorcalculationofarangeofpossi-blestatisticallysigni?cantinputfeatures,itinevitablysuffersfromalevelofbiasasalthoughthetrainingprocedurecanpointoutwhichfromthefeaturesarestatisticallyinsigni?cant,itcannotsuggest,orextractfeaturesdifferentthantheprovidedones.Also,therelativelylimitednumberofthefeaturesinmostappli-cationsoftencannotfullydescribethetargetsatdifferentsituationsorenvironmentalconditions.Therefore,theapplicabilityofthesealgorithmsisoftenlimitedtospeci?ccasesandrestrictstheidenti?cationtofeatureswithlimitedspectralandgeometricvariations.

Intheearly2000sanewmachinelearningtechnol-ogyemergedknownasDeepLearning(DL)basedonArti?cialNeuralNetworks(ANN),andinthecaseofimageapplications,ConvolutionalNeuralNetworks(CNNs).ThisnewtechnologywaslargelybasedontheseminalworkofFukushima(

1980

)aswellasHubelandWiesel(

1959

)thatintroducedthe‘neocognitron’(Fukushima

1980

;

1983

;2003)andestablishedtheuseofconvolutionalanddown-samplinglayers.In1986,RinaDecherwasoneofthe?rsttousetheterm‘deeplearning’tothemachinelearningcommunity,inwhich‘deep’wasusedtodescribetheuseofmultiplelayersinanetwork.Later,Waibel(

1987

)proposedthetimedelayneuralnetwork(TDNN),oneofthe?rstconvolutionalnetworksfollowedbyLeCunetal(

1989

)whoappliedthatinahandwrittencharacterrecognitionproblemusinga7-levelConvolutionalNeuralNetowork(CNN),calledLeNet-5(LeCunetal

1998

).Asigni?cantadvantageofdeeplearningmeth-odsisthatthefeatureextractionandselectionstageisperformedbythelearningalgorithmautomaticallyandnotbyaperson.Yet,thisusuallyrequiressig-ni?cantamountsoflabeleddataandconsiderablecomputationalresourcesforthetrainingprocess.TheutilizationofGPUsinthetrainingprocesswasthe

turningpointforusingCNNsinimagerecognition.Inthe2012ImageNetcompetition,the?rstCNNeversubmitted,namedAlexNet(Krizhevskyetal

2012

),wonthecompetition.ThetrainingofAlexNetusedoveronemillionlabeledimagesabout~1000objectcategoriesandtook~6daysusing2GPUs(Krizhevskyetal

2012

).Sincethen,deepneuralnetworkshavewon

manyinternationalpatternrecognitioncompetitionsandhaveattractedbroadattention,byoutperforminglegacymachinelearningmethodsandhandlingbetterlargeamountsofdatawithminimumuserinterven-tion(Schmidhuber

2015

).Assuch,theyoffercon-siderablepotentialforarchaeology.

Amongthecommontasksassignedtodeeplearn-ingCNNnetworksareimageclassi?cation,objectdetection,andsemanticsegmentation.Classi?cationisabasicprocessroutinelyperformedinarchaeologywiththeobjectiveofclassifyinggroupsofimagesthatsharesomecommonfeatures,orobjectsintooneofanumberofprede?nedclasses.Forexample,AImeth-odshavebeenusedtoanalyzeuse-wearonlithictools(e.g.,VandenDries

1998

)andtoclassifyandidentifytypesofpottery(e.g.,H?rretal

2008

;Anichinietal,

2021

;PawlowiczandDownum

2021

).CaspariandCrespo(

2019

),usedanobject-detectionbasedmethodtoidentifyIronAgeburialmoundsinaerialimagery.Morerecently,Agapiouetal(

2021

)appliedtheobjectdetectionmethodtodetectsurfaceceramicsindroneimages.Finally,semanticsegmentationalgorithmsattempttoanalyzeimagesfurther,bypartitioningthemintosemanticallymeaningfulpartsandafter-wardsbyclassifyingeachpartintooneofthe‘X’pre-determinedclassesi.e.,interpretableimageregionsforinstance,archaeologicalsites,regionsofvegetation,modernstructuresandothers(e.g.,Garcia-Garciaetal

2018

;Minaeeetal

2020

).Semanticsegmentationoperatesatpixel-levelinthesensethateachpixelofanimageislabeledaccordingtotheclassitbelongsto.Thismakessemanticsegmentationamuchmorecomplicatedandcomputationallyintensivetask,yetitcanproducemoreinformativeanddetailedresultscomparedtoclassi?cationandobjectidenti?cation(e.g.,Kendalletal

2015

;Garcia-Garciaetal

2018

;Minaeeetal

2020

).ThevalueofthisapproachforgeophysicalanalysishasbeendemonstratedintheworkofKü?ükdemirciandSarris’s(

2020

)usingground-penetratingradarimages.

Forallthissuccess,onlyrecentlytherehavebeenlimitedyetincreasingworkadoptingCNNapproachesfortheautomateddetectionofarchaeologicalsites(Trieretal

2018

;CaspariandCrespo,

2019

;Kazimietal

2019

;Lambersetal

2019

;Rayneetal

2020

;Somraketal

2020

;Soroushetal

2020

;Bonhageetal

2021

;Verschoof-vanderVaartandLandauer

2021

)fromEarthobservation(EO)data.Inpart,thisisduetotheneedforanabundanceoflabeleddatatoenabletheCNNtoaccuratelyidentifydifferentsignatures.Forexample,ImageNet,anopenlyavailablevisualdatabasedesignedforuseineverydaycontemporary

Figure1.Demonstrationoftheconvolutionofanimagewithanedgedetection?lter.Ontheleftistheinitialimage,inthemiddleisanedgedetection?lterandontherightistheresultedimage,whichshowstheedgesoftheinitialimage.

objectrecognitioncomprises14,197,122images(Rus-sakovskyetal

2015

).Itisthisvolumeoflabelleddata,whichhasenabledrapidadvancesintheuseofCNNinday-to-daytasks.Inarchaeologyhowever,similarlytoother?elds,theamountoffreelyavailable,properlylabeleddataiscurrentlylimited.Furthermore,onlinesharingofsuchdataisoftenrestrictedbycon-?dentialityissuesthatariseoftenfromlocallegisla-tion,relatedwiththeefforttoprotectthesesitesfromlooting.

Inthispaper,weofferarouteforwardbyusingopenlyavailablesatellitehighspatialresolutionima-geryandthroughexaminingtwoneuralnetworkarchitectures:TheSegNet(Kendalletal

2015

),adeepconvolutionalencoder-decoderarchitectureforrobustsemanticpixel-wiselabeling;andacustom8-layerCNNdesignedforthisresearch(SimpleNet).Wealsoopen-upaccesstothesetoolsthroughprovid-ingapackagedapplication(supplementaryinforma-tion)allowingreaderstoruntheirownanalysis,helpingthemtoevaluatethestrengthsandweaknessesofthisnetworkandbeginamoreopenandinclusiveconversationabouttheiruseinarchaeology.

Convolutionalneuralnetworks(CNN)

Inthissectionwebrie?yintroducethefundamentalconceptsofCNNs.Althoughamoreextensivepre-sentationofCNNsisbeyondthescopeofthiswork,theinterestedreadercan?nddetailedintroductionsfocusingonvariousaspectsofCNNsinseveralworksincluding,Nielsen(

2015

);Wu(

2017

);Alzubaidietal(

2021

);Lietal(

2021

);andUlkuandAkagün-düz(

2022

).

DeeplearningalgorithmsareatypeofmachinelearningtechniquethatusesANNofseverallayersinahierarchicalarchitecturetoenablemachinestopro-cessdatainanonlinearmanner.Arti?cialneuralnet-worksconsistofcircuitsofsimple,yethighlyinterconnected,nodestoselectivelytransmitsignalsinaprocessthatmimicsthebiologicalneurons(Hop?eld

1982

),therebysimulatingthewaybiologicalneuralnetworkswork.Thesenodesareorganizedin

layerswhichprocessinformationbyoutputtingdynamicstateresponsestoexternalinputs(commonlyaresponsefromapreviouslayer).DataareintroducedtotheANNthroughaninputlayerandresultsdeliv-eredwitha?naloutputlayer.Allintermediatelayersaretermedhiddenlayers,whichcarryoutallthepro-cessing.Thelargerthenumberofhiddenlayers,the‘deeper’thenetwork,enablingtheidenti?cationpro-gressivelyofmorecomplexpatternsanddetails.Forexample,the?rstlayermaylearnrecognizingedgesinanimage,thesecondshapes,thethirdobjectsandsoon.

Informationispassedbetweenlayersthroughcon-

nectionsthatarecharacterizedbyweightsandbiases,sothatthereceivedtotaloutputcorrespondstoaweightedsumofindividualnode-inputs,plussomebias.Theresultoutputmayormaynotexceedathresholdde?nedbyapre-setactivationfunctionsuchasasigmoidormostcommonlyarecti?edlinearacti-vationfunction(ReLU;seebelow),essentiallydecidingifthisinformationshouldbetransmittedtothenextlayer(forwardpassed),asitisorinamodulatedform,orrather?lteredout.Theoptimalvaluesofeachweightandbiasarede?nedbythetrainingofthenet-work:anon-linearoptimizationprocesswherebyacostfunctionrepresentingthedistancebetweentrain-inglabeleddataandthatpredictedbynetworkresultsisminimized.

Thenumberofrequireddeeplayerswithinthe

network,andthereforeindirectlythenumberofunknowns(i.e.,parametersthataretobetunnedthroughthetraining),dependsonthecomplexityofthepatternstobeidenti?edandtheamountoflabeleddata.Atpresent,alimitednumberoflabelledimagesforarchaeologyimposesarequirementforcarefuldesignoflearningnetworks,keepingthenumberoflayersandconnectionslowenoughtoensurethattheoptimizationproblemofnetworktrainingisnotunder-determinedi.e.,thenumberofunknownpara-metersexceedthenumberofdataandpriorcon-straintsthatareusedtoregularize/stabilizethetrainingandreducethegeneralizationerror(over-?tting)(e.g.,Goodfellowetal

2016

).

Figure2.Architectureofthe8-layerconvolutionalneuralnetwork.

Table1.ArchaeologicalsitesinPeruusedtotrainthealgorithm.

Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Period

LaCentinela(ChinchaValley)

?13.450385,?76.171092

Inca(AD1476–1532)LateIntermediate(AD1000–1476AD)

Cahuachi(NazcaValley)

?14.818241,?75.117462

EarlyIntermediate(c.200BC–AD600)

Caral(SupeValley)

?10.890938,?77.521858

LatePreceramic(c.3000–1800BC)

TamboColorado(PiscoValley)

?13.704619,?75.829431

Inca(AD1476–1532)

Table2.Additionalarchaeologicalsites(areas)inPerutofurthertrainthealgorithm.

Archaeologicalareas&sites CoordinatesWGS84(centrepoint) Periods

Various(LowerIcaValley)

?14.614319,?75.614994

Various(1800BC–AD1534)

NazcaGeoglyphs(PampadeSanJosé,NascaValley)

?14.696486,?75.178422

EarlyIntermediate(200BC–AD600AD)

CerroSechín(CasmaValley)

?9.480703,?78.258997

InitialPeriod(1600BC)

Hereweexaminetwodifferent,supervised,fullyconvolutional,neuralnetworks:onebasedonthearchitectureofSemanticSegmentationcalledSegNet(Kendalletal

2015

;Badrinarayananetal

2017

);andtheotheracustom8-layernetworkdevelopedbytheauthorscalledSimpleNet.Botharefullyconvolutionalneuralnetworks,acategoryofnetworkconsistingoflocallyconnectedlayerssothateachneurononlyreceivesinputfromasmalllocalsubgroupofthepixelsintheinputimage.SuchLayerscanperformconvolu-tion/deconvolution,pooling(i.e.,asample-baseddis-cretizationprocessthateffectivelydown-samplestheimage)andup-sampling,butnotcontainingfullycon-nectedlayers,andthusrequiringsigni?cantlylessmemoryandcomputationalpower(Longetal

2015

).SemanticsegmentationalgorithmshavebeenusedwidelyinclassifyingfeaturesinvariousremotesensingimagesincludinghighresolutionGoogleEarthimages(Yuetal

2021

).Additionally,thecustom8-layernet-workwasdesignedtobeimplementedforthelownumberoflabeleddatausedinthiswork.Inthefol-lowingsections,wedescribethearchitectureandfunc-tionalityofthesetwonetworks.

SegNet

SegNetisadeepfullyconvolutionalneuralnetworkthatsegmentstheimagebyclassifyingeachpixelindependently.Itconsistsofanencodernetworkwith13layers,eachdesignedforobjectclassi?cation.Eachlayerisconvolvedusingasetof2D?lterstoproduceasetoffeaturemapsofincreasingcomplexityasdescribedpreviously.Thesemapsarelaterbatchnormalizedi.e.,tohaveameanoutputcloseto0andtheoutputstandarddeviationcloseto1.Next,aReLUactivationfunctionisappliedfollowedbydown-samplingusingamaxpoolinglayerwitha2×2nonoverlappingwindow(Kendalletal

2015

;Badrinaraya-nanetal

2017

).TheReLUactivationfunctionisalinearfunctionthatoutputstheinputifitispositive,orelse,outputszero(Haraetal

2015

).Themaxpoolingfunctioncalculatesthemaximum,ineachpatchofeachfeaturemap(Chollet

2017

).Inthe?nallayertheresultingoutput,fromthepreviousstep,issub-sampledbyafactorof2whiletheboundaryinforma-tionisalsostored.Thisiscrucialasduringthesuccessivedown-samplingoperationsthehighfre-quencydetailsoftheimagearelessenedresultingin

Figure3.Asampleofthe2000Trainingimages,ofsize256×256×3pixels(GoogleEarthimagery),fromvariousarchaeologicalareasaroundPeru.Thetoprowshowstheinitialimagesandthebottomrowthelabeledimages.

blurryandinaccurateboundaries.However,bound-ariesareimportantinsmallobjectsandstructuressuchasbuildings,cropmarksetcandbystoringthisinformationitcanberetrievedduringthedecodingstage.

Thenetworkconsistsof13decoderlayerseachonecorrespondingtoitsrespectiveencoderlayer.Theroleoftheencoderlayersistosemanticallyprojectthelowerresolutionfeaturesextracted(learnt)bytheencoder,ontothehigherresolutionimagespacetogetadenseclassi?cation,i.e.,aclassi?cationforeachpixelintheoriginalsizedimage.Eachdecoderlayerpro-ducesdensefeaturemaps(images)byup-samplingitsinputfeaturemaps(theoutputofthepreviouslayer)usingthememorizedmax-poolingindicesproducedonthepreviousstage.Thenconvolutionisappliedusingatraineddictionaryof?lterstoproducedensefeaturemaps.The?naldecoderoutputisfedintoaSoftMaxclassi?er,i.e.,alayerthatassignseachpixelindependentlytoaclassaccordingtoaprobabilityscoreamongthecandidateclasses(e.g.,Nielsen

2015

;Alzubaidietal

2021

).

2.2.Acustom8-layerconvolutionalneuralnetwork

(SimpleNet)

Sincetheamountoflabeleddataavailableforarchae-ologyislimited,weconstructedacustom8-layerconvolutionalneuralnetwork(SimpleNet),basedontheSegNetarchitecturewiththeaimofkeepingthenumberoflayersandtrainableparametersaslowaspossiblewhileachievingadequatelyaccurateresults.The?rstlayerisanimageinputlayerthatreceivesRGBimages.Thenextlayerisaconvolutionallayerwith32trainable?ltersappliedinanon-overlappingmovingwindowofsize5×5andwithstride1.Strideshows

howmuchthe?ltershiftsaroundtheinputvolume(inourcaseitshiftsbyoneunit)whilethe?lterapproximatestheLaplacian(i.e.,a2Dsecondspatialderivative)oftheGaussianoperatorandessentiallywhenconvolvedwithanimagederivesasanoutputanapproximationofitssecondspatialderivative.Thismeansthatinregionswheretheimagehasconstantintensitythe?lter’sresponsewillbezero.Inregionswheretheintensity(i.e.,pixelbrightness)changesrapidly,however,suchasattheedgesofanobject,the?lter’sresponseyieldshighamplitudes(?gure

1

).

The?lterscanbeconceivedofas2Dimageswhose

shapeandcolorareadjustedthroughthetrainingpro-cesstooptimallyexpressdifferentfeaturesofthedata(e.g.,?gure

2

).Next,arecti?edlinearunit(ReLU)isappliedfollowedbyamax-poolingwitha2×2nonoverlappingwindowwithstride2andapaddingwith0’s.Thisisthemostcommoncon?gurationasitdis-cardsthe75%oftheactivationsinaninputimageduetodown-samplingby2inbothwidthandheight.Fol-lowingthis,atransposeconvolutionisappliedwiththesamenumberof?ltersandawindowwith4×4sizeandstride2.Likewise,thisisacommoncon?g-uration,asthedivisibilityofthewindowsizebythestridemitigatestheproblemofcheckerboardartifactsintheup-sampledimage(e.g.,Odenaetal

2016

).Thesixthlayerisanotherconvolutionallayerof1×1windowsizeandstride1.Then,aSoftMaxclassi?erisapplied,tothe?naloutputfromthepreviouslayer,toassigneachpixelintoaclass.Finally,theimageisseg-mentedintotheassignedclassesbyaclassi?cationlayerthatcalculatestheclassweighedcross-entropyloss(e.g.,Bishop

2006

).The8-layerconvolutionalneuralnetworktechniqueisillustratedin?gure

2

.

Figure4.Histogramillustratingthenumberofpixelsusedineachofthe4classesfortheD500datasetwithorangecolorandfortheD2000datasetwithbluecolor.

Trainingandoptimisation

Data

Weusedopenlyavailablehigh-resolutionimagesfromGoogleEarthofarchaeologicalsitesinPeruasatrainingsetforbothnetworks.Thisgeographicalregionwaschosenforitscontinueddiscoveryofnewsitesusingremotelysenseddata(Ruggles

2015

;Bikoulisetal

2018

;CignaandTapete

2018

)andtheavailabilityofdatafrompreviouslarge-scalearchae-ologicalterrestrialsurveysforevaluationpurposes.

Initially,welabeled500imagesfrom4differentarchaeologicalsites,(table

1

).AsmallpartoftheTamboColoradoarchaeologicalsitewasthenusedtotrainthealgorithmandalargerareaofthesamesitefortesting.

Later,weaugmentedtheoriginal500imageswithafurther1500fromwiderarchaeologicalareasandsitesacrossPerutofurthertrainthealgorithm(table

2

)andcheckitsperformanceasthenumberoflabeleddataincrease.Theseadditionalimagesconsistmostlyofgeoglyphs(usuallylinearfeatures)markedinopendesertpampaenvironments.Figure

3

showssomesamplesoflabeledimagesusedinthiswork.

OptimisationprocessThedatawerelabelledwiththeImageLabelerprograminMatlab9.6usingfourdifferentclasses:‘archaeologi-cal’,‘modern’,‘vegetation’and‘background’.As‘archaeological’weincludedeverytargetofarchae-ologicalinterest,regardlessofshape,condition,color,periodetcWelabeledlinear,rectilinear,andcircularfeaturesthatwereclearlyvisibleintheGoogleEarthimagery,correspondingtoalargevarietyofarchae-ologicalfeatures.Weusedsuchbroadterminologybecausethetargetofthisworkwastofurtherincreasethenumberoftrainingimagesavailabletousersin

Table3.OptimalsetofparametersforSegNet,8-layerD500andD2000networks.

Parametername Value

Gradientdecayfactor 0.9000

Squaredgradientdecayfactor 0.9990Epsilon 1e-08

Initiallearningrate 1e-04(D500)and1e-03(D2000)

Dropratefactor 0.4

Dropperiod 5

L2-regularizationparameter 1e-09Gradientthresholdmethod UsingtheL2-normMaxepochs 30

Minibatchsize 5(D500)and15(D2000)

Shuf?e Ateveryepoch

future,withsub-classi?cationopenasanoptiontothosewhowishtomakeuseofthedataset.As‘modern’welabeledmodernstructuressuchasmodernbuild-ingsandvehicles.‘Vegetation’incorporatesareasofgrass,plants,andtrees.Finally,as‘background’weclassi?edeverythingelse,suchassoil,non-pavedroads,and?eldswithoutvegetation.Imagesintheinitialsetof500weredenotedasD500,andinthelarger2000setasD2000.Imagesforthesites/areasofinterestwereextractedfromGoogleEarthinRGB(Red,Green,Blue)asjpg?les.Ourgoal,istotrainanalgorithmtousehighresolution,freelyavailableGoogleEarthimages.Unfortunately,GoogleEarthdoesnotproviderawimagesthereforewehavetorelyonthealreadyprocessedimagesthataremadeavailablethroughtheGoogleEarthapplication.Itshouldbenotedherethatatpresent,thehigh-resolutionimagesinGoogleEarthapplicationarenotavailableinGoogleEarthEngineandthereforeisnotpossibletousethisenvironmenttotraindataset.

Figure5.SegmentationofthearchaeologicalsiteofTamboColoradowiththe3trainednetworks,(a)GoogleEarth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論