浙江省逍林初中重點中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第1頁
浙江省逍林初中重點中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第2頁
浙江省逍林初中重點中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第3頁
浙江省逍林初中重點中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第4頁
浙江省逍林初中重點中學2023-2024學年中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

浙江省逍林初中重點中學2023-2024學年中考沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發(fā)現(xiàn)把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離y與時間t之間的函數(shù)關系的大致圖象是()A. B. C. D.2.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或143.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<34.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數(shù).小昱在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加2;阿帆在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加1.若小昱在某頁寫的數(shù)為101,則阿帆在該頁寫的數(shù)為何?()A.350 B.351 C.356 D.3585.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π6.在對某社會機構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認為最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標準差7.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y38.如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=2,設弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是A.B.C.D.9.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣310.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉(zhuǎn)90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)11.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣412.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發(fā),勻速行駛,甲出發(fā)1小時后乙再出發(fā),乙以2km/h的速度度勻速行駛1小時后提高速度并繼續(xù)勻速行駛,結(jié)果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關系如圖所示,則甲出發(fā)_____小時后和乙相遇.14.A.如果一個正多邊形的一個外角是45°,那么這個正多邊形對角線的條數(shù)一共有_____條.B.用計算器計算:?tan63°27′≈_____(精確到0.01).15.某校為了解本校九年級學生足球訓練情況,隨機抽查該年級若干名學生進行測試,然后把測試結(jié)果分為4個等級:A、B、C、D,并將統(tǒng)計結(jié)果繪制成兩幅不完整的統(tǒng)計圖.該年級共有700人,估計該年級足球測試成績?yōu)镈等的人數(shù)為_____人.16.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.17.反比例函數(shù)的圖象經(jīng)過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減小)18.在某一時刻,測得一根長為1.5m的標桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:=_____.20.(6分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.21.(6分)《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經(jīng)》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”22.(8分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.23.(8分)某門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.該門市為促銷制定了兩種優(yōu)惠方案:方案一:買一件甲種商品就贈送一件乙種商品;方案二:按購買金額打八折付款.某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.(1)分別直接寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y(2)若該公司共需要甲種商品20件,乙種商品40件.設按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關系式;利用w與m之間的關系式說明怎樣購買最實惠.24.(10分)如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)25.(10分)霧霾天氣嚴重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據(jù)統(tǒng)計圖表回答下列問題:本次被調(diào)查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數(shù);若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).26.(12分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標;(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關于直線QB的對稱點為點C,當點C恰好在直線l上時,求點Q的坐標;②若點O關于直線QB的對稱點為點D,當線段AD的長最短時,求點Q的坐標(直接寫出答案即可).27.(12分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:根據(jù)題意出教室,離門口近,返回教室離門口遠,在教室內(nèi)距離不變,速快跑距離變化快,可得答案.詳解:根據(jù)題意得,函數(shù)圖象是距離先變短,再變長,在教室內(nèi)沒變化,最后迅速變短,B符合題意;

故選B.點睛:本題考查了函數(shù)圖象,根據(jù)距離的變化描述函數(shù)是解題關鍵.2、D【解析】

根據(jù)頂點公式求得已知拋物線的頂點坐標,然后根據(jù)軸對稱的性質(zhì)求得另一條拋物線的頂點,根據(jù)題意得出關于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉(zhuǎn)換,關于x軸對稱的點和拋物線的關系.3、B【解析】

根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.4、B【解析】

根據(jù)題意確定出小昱和阿帆所寫的數(shù)字,設小昱所寫的第n個數(shù)為101,根據(jù)規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數(shù).【詳解】解:小昱所寫的數(shù)為1,3,5,1,…,101,…;阿帆所寫的數(shù)為1,8,15,22,…,設小昱所寫的第n個數(shù)為101,根據(jù)題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數(shù)為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關鍵.5、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.6、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構(gòu)年齡特征,因此,最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.7、D【解析】

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點所在的象限是解答此題的關鍵.8、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=?!喈攛=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應在y=的一半上方,從而可排除C選項。故選A。9、D【解析】

先得到拋物線y=x2的頂點坐標(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.10、A【解析】

分順時針旋轉(zhuǎn),逆時針旋轉(zhuǎn)兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉(zhuǎn),解題的關鍵是利用空間想象能力.11、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵.12、C【解析】

根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關鍵在于確定a、b的大小二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

由圖象得出解析式后聯(lián)立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點睛】此題考查一次函數(shù)的應用,關鍵是由圖象得出解析式解答.14、205.1【解析】

A、先根據(jù)多邊形外角和為360°且各外角相等求得邊數(shù),再根據(jù)多邊形對角線條數(shù)的計算公式計算可得;B、利用計算器計算可得.【詳解】A、根據(jù)題意,此正多邊形的邊數(shù)為360°÷45°=8,則這個正多邊形對角線的條數(shù)一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點睛】本題主要考查計算器-三角函數(shù),解題的關鍵是掌握多邊形的內(nèi)角與外角、對角線計算公式及計算器的使用.15、1【解析】試題解析:∵總?cè)藬?shù)為14÷28%=50(人),∴該年級足球測試成績?yōu)镈等的人數(shù)為(人).故答案為:1.16、(,)【解析】

連接AC,根據(jù)題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標為(0,2),可設拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標代入求解,最后將解析式化為頂點式即可.【詳解】解:連接AC,∵A、B兩點的橫坐標分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標為(0,2),∵A、B兩點的橫坐標分別為﹣1,4,∴設拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標為(,).故答案為:(,).【點睛】本題主要考查相似三角形的判定與性質(zhì),拋物線的頂點式,解此題的關鍵在于熟練掌握其知識點,利用相似三角形的性質(zhì)求得關鍵點的坐標.17、﹣6增大【解析】

∵反比例函數(shù)的圖象經(jīng)過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內(nèi),y隨x的增大而減小;(2)當k<0時,函數(shù)圖象在二,四象限,在每個象限內(nèi),y隨x的增大而增大.18、13【解析】

根據(jù)同時同地物高與影長成比列式計算即可得解.【詳解】解:設旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點睛】本題考查投影,解題的關鍵是應用相似三角形.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1【解析】

首先計算負整數(shù)指數(shù)冪和開平方,再計算減法即可.【詳解】解:原式=9﹣3=1.【點睛】此題主要考查了實數(shù)運算,關鍵是掌握負整數(shù)指數(shù)冪:為正整數(shù)).20、(1)證明見解析;(2)補圖見解析;.【解析】

根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)余角的性質(zhì)即可得到結(jié)論;根據(jù)平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據(jù)平行四邊形的面積公式即可得到結(jié)論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設,,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定和性質(zhì),解題的關鍵是正確的作出輔助線.21、x=60【解析】

設有x個客人,根據(jù)題意列出方程,解出方程即可得到答案.【詳解】解:設有x個客人,則解得:x=60;∴有60個客人.【點睛】本題考查了由實際問題抽象出一元一次方程,找準等量關系,正確列出一元一次方程是解題的關鍵.22、(1)二次函數(shù)的解析式為,頂點坐標為(–1,4);(2)點P橫坐標為––1;(3)當時,四邊形PABC的面積有最大值,點P().【解析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標,從而求得點P的坐標;(3)設點P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點P的坐標.試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標為(﹣1,4)(2)設點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設點P(,),則,,∴=∴當時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數(shù)綜合題,主要考查學生對二次函數(shù)解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問題.23、(1)y1=80x+4400;y2=64x+4800;(2)當m=20時,w取得最小值,即按照方案一購買20件甲種商品、按照方案二購買20件乙種商品時,總費用最低.【解析】(1)根據(jù)方案即可列出函數(shù)關系式;(2)根據(jù)題意建立w與m之間的關系式,再根據(jù)一次函數(shù)的增減性即可得出答案.解:(1)y1=20×300+80(x-20)得:y2=(20×300+80x)×0.8得:(2)w=300m+[300(20-m)+80(40-m)]×0.8,w=-4m+7360,因為w是m的一次函數(shù),k=-4<0,所以w隨的增加而減小,m當m=20時,w取得最小值.即按照方案一購買20件甲種商品;按照方案二購買20件乙種商品.24、3+3.5【解析】

延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應用﹣仰角俯角問題;2、解直角三角形的應用﹣坡度坡角問題25、(1)200人,;(2)見解析,;(3)75萬人.【解析】

(1)用A類的人數(shù)除以所占的百分比求出被調(diào)查的市民數(shù),再用B類的人數(shù)除以總?cè)藬?shù)得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數(shù),從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應的圓心角的度數(shù);(3)用該市的總?cè)藬?shù)乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調(diào)查的市民共有:(人),∴,;(2)組的人數(shù)是(人)、組的人數(shù)是(人),∴;補全的條形統(tǒng)計圖如下圖所示:扇形區(qū)域所對應的圓心角的度數(shù)為:;(3)(萬),∴若該市有100萬人口,市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù)約為75萬人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、統(tǒng)計表,讀懂圖形,找出必要的信息是解題的關鍵.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論