版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年海南省海口市長流實驗校中考數(shù)學(xué)仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各式屬于最簡二次根式的有()A. B. C. D.2.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或43.不等式組的正整數(shù)解的個數(shù)是()A.5 B.4 C.3 D.24.下列圖形中,是正方體表面展開圖的是()A. B. C. D.5.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學(xué)記數(shù)法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時6.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.7.由4個相同的小立方體搭成的幾何體如圖所示,則它的主視圖是()A.B.C.D.8.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.9.若反比例函數(shù)的圖像經(jīng)過點,則一次函數(shù)與在同一平面直角坐標(biāo)系中的大致圖像是()A. B. C. D.10.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結(jié)果保留π)為______________.12.和平中學(xué)自行車停車棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為____m.13.點A到⊙O的最小距離為1,最大距離為3,則⊙O的半徑長為_____.14.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°15.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當(dāng)y>0時,x的取值范圍是__.16.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設(shè)點P的橫坐標(biāo)為m.(1)求此拋物線所對應(yīng)的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.18.(8分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.19.(8分)某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.(1)若商場預(yù)計進貨款為3500元,求A型、B型節(jié)能燈各購進多少盞?根據(jù)題意,先填寫下表,再完成本問解答:型號A型B型購進數(shù)量(盞)x_____購買費用(元)__________(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?20.(8分)化簡:21.(8分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?22.(10分)列方程解應(yīng)用題:某景區(qū)一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現(xiàn)由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?23.(12分)計算:.先化簡,再求值:,其中.24.如圖,在矩形ABCD中,E是邊BC上的點,AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
先根據(jù)二次根式的性質(zhì)化簡,再根據(jù)最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關(guān)鍵.2、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得a1=-2,a2=1.
即a的值是1或-2.
故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.3、C【解析】
先解不等式組得到-1<x≤3,再找出此范圍內(nèi)的正整數(shù).【詳解】解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
則不等式組的解集為-1<x≤3,
所以不等式組的正整數(shù)解有1、2、3這3個,
故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關(guān)鍵是正確得出一元一次不等式組的解集.4、C【解析】
利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.5、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、A【解析】
過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長列方程即可得到結(jié)論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設(shè)EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.7、A【解析】試題分析:幾何體的主視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.考點:三視圖視頻8、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.9、D【解析】
甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負(fù),聯(lián)系反比例函數(shù),一次函數(shù)的性質(zhì)即可確定函數(shù)圖象.【詳解】解:由于函數(shù)的圖像經(jīng)過點,則有∴圖象過第二、四象限,
∵k=-1,
∴一次函數(shù)y=x-1,
∴圖象經(jīng)過第一、三、四象限,
故選:D.【點睛】本題考查反比例函數(shù)的圖象與性質(zhì),一次函數(shù)的圖象,解題的關(guān)鍵是求出函數(shù)的解析式,根據(jù)解析式進行判斷;10、D【解析】
根據(jù)兩直線平行,內(nèi)錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯角相等是解答本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、250【解析】
從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h(yuǎn)=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查;圓柱體積公式=底面積×高.12、1.【解析】
由CD⊥AB,根據(jù)垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計算出OD,則通過CD=OC?OD求出CD.【詳解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半徑OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案為1.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的?。部疾榱饲芯€的性質(zhì)定理以及勾股定理.13、1或2【解析】
分類討論:點在圓內(nèi),點在圓外,根據(jù)線段的和差,可得直徑,根據(jù)圓的性質(zhì),可得答案.【詳解】點在圓內(nèi),圓的直徑為1+3=4,圓的半徑為2;點在圓外,圓的直徑為3?1=2,圓的半徑為1,故答案為1或2.【點睛】本題考查點與圓的位置關(guān)系,關(guān)鍵是分類討論:點在圓內(nèi),點在圓外.14、B【解析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.15、【解析】
根據(jù)拋物線的對稱軸以及拋物線與x軸的一個交點,確定拋物線與x軸的另一個交點,再結(jié)合圖象即可得出答案.【詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對稱軸為直線,與x軸的一個交點為(-1,0),∴拋物線與x軸的另一個交點為(3,0),結(jié)合圖象可知,當(dāng)y>0時,即x軸上方的圖象,對應(yīng)的x的取值范圍是,故答案為:.【點睛】本題考查了二次函數(shù)與不等式的問題,解題的關(guān)鍵是通過圖象確定拋物線與x軸的另一個交點,并熟悉二次函數(shù)與不等式的關(guān)系.16、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當(dāng)點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.三、解答題(共8題,共72分)17、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得答案;(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.【詳解】解:(1)∵點A(-1,0),點B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1,∴C(0,1).設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標(biāo)代入函數(shù)解析式,得,解得,即BC的函數(shù)解析式為y=-x+1.由P在BC上,F(xiàn)在拋物線上,得P(m,-m+1),F(xiàn)(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點E,當(dāng)x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當(dāng)m=1時,線段PF與DE重合,m=1(不符合題意,舍).當(dāng)m=2時,四邊形PEDF為平行四邊形.考點:二次函數(shù)綜合題.18、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【點睛】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識,難度適中.19、(1)30x,y,50y;(2)商場購進A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【解析】
(1)設(shè)商場應(yīng)購進A型臺燈x盞,表示出B型臺燈為y盞,然后根據(jù)“A,B兩種新型節(jié)能臺燈共100盞”、“進貨款=A型臺燈的進貨款+B型臺燈的進貨款”列出方程組求解即可;(2)設(shè)商場銷售完這批臺燈可獲利y元,根據(jù)獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出獲利的最大值.【詳解】解:(1)設(shè)商場應(yīng)購進A型臺燈x盞,則B型臺燈為y盞,根據(jù)題意得:解得:.答:應(yīng)購進A型臺燈75盞,B型臺燈2盞.故答案為30x;y;50y;(2)設(shè)商場應(yīng)購進A型臺燈x盞,銷售完這批臺燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,∴100﹣x≤3x,∴x≥2.∵k=﹣5<0,y隨x的增大而減小,∴x=2時,y取得最大值,為﹣5×2+1=1875(元).答:商場購進A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【點睛】本題考查了一元一次方程的應(yīng)用、二元一次方程組的應(yīng)用以及一次函數(shù)的應(yīng)用,主要利用了一次函數(shù)的增減性,(2)題中理清題目數(shù)量關(guān)系并列式求出x的取值范圍是解題的關(guān)鍵.20、x+2【解析】
先把括號里的分式通分,化簡,再計算除法.【詳解】解:原式==x+2【點睛】此題重點考察學(xué)生對分式的化簡的應(yīng)用,掌握通分和約分是解題的關(guān)鍵.21、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設(shè)可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據(jù)總價=單價×數(shù)量結(jié)合A、B兩種文具的進價及總價,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì),即可解決最值問題.【詳解】(1)設(shè)A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設(shè)購進A型
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩節(jié)幼兒講話稿15篇
- 微觀世界紀(jì)錄片觀后感
- 解決方案企業(yè)突發(fā)環(huán)境事件應(yīng)急預(yù)案管理d
- 2016河北道法試卷+答案+解析
- 初級會計實務(wù)-2021年5月16日下午初級會計職稱考試《初級會計實務(wù)》真題
- 初級會計經(jīng)濟法基礎(chǔ)-初級會計《經(jīng)濟法基礎(chǔ)》模擬試卷33
- 2024年中國智慧工廠行業(yè)市場集中度、競爭格局及投融資動態(tài)分析報告(智研咨詢)
- 二零二五年度企業(yè)應(yīng)收賬款債權(quán)轉(zhuǎn)讓及資金周轉(zhuǎn)協(xié)議4篇
- 二零二五年度高端個人咨詢服務(wù)合同2篇
- 基于深度學(xué)習(xí)的室外火災(zāi)煙霧目標(biāo)檢測
- 福建省泉州市晉江市2024-2025學(xué)年七年級上學(xué)期期末生物學(xué)試題(含答案)
- 2025年春新人教版物理八年級下冊課件 第十章 浮力 第4節(jié) 跨學(xué)科實踐:制作微型密度計
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合試卷(含答案)
- 收養(yǎng)能力評分表
- 三年級上冊體育課教案
- 山東省桓臺第一中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 皮膚儲存新技術(shù)及臨床應(yīng)用
評論
0/150
提交評論