版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
楚雄州雙柏縣市級名校2024屆中考數(shù)學(xué)仿真試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°2.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.3.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-24.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數(shù)是,次數(shù)是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項5.函數(shù)(為常數(shù))的圖像上有三點,,,則函數(shù)值的大小關(guān)系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y16.已知二次函數(shù)y=x2+bx﹣9圖象上A、B兩點關(guān)于原點對稱,若經(jīng)過A點的反比例函數(shù)的解析式是y=,則該二次函數(shù)的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣7.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα8.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.69.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.10.計算1+2+22+23+…+22010的結(jié)果是()A.22011–1 B.22011+1C. D.二、填空題(共7小題,每小題3分,滿分21分)11.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.12.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.13.同圓中,已知弧AB所對的圓心角是100°,則弧AB所對的圓周角是_____.14.分解因式2x2﹣4x+2的最終結(jié)果是_____.15.一個多邊形的每個內(nèi)角都等于150°,則這個多邊形是_____邊形.16.如圖,正方形ABCD中,E是BC邊上一點,以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.17.如圖,在平面直角坐標(biāo)系中,已知C(1,),△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則點F的坐標(biāo)為_____.三、解答題(共7小題,滿分69分)18.(10分)三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機(jī)選擇其中的一個通過.(1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.19.(5分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+2的圖象交x軸于點P,二次函數(shù)y=﹣x2+x+m的圖象與x軸的交點為(x1,0)、(x2,0),且+=17(1)求二次函數(shù)的解析式和該二次函數(shù)圖象的頂點的坐標(biāo).(2)若二次函數(shù)y=﹣x2+x+m的圖象與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(點A在點B的左側(cè)),在x軸上是否存在點M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.20.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點,其中點B的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,4);點D的坐標(biāo)為(0,2),點P為二次函數(shù)圖象上的動點.(1)求二次函數(shù)的表達(dá)式;(2)當(dāng)點P位于第二象限內(nèi)二次函數(shù)的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設(shè)平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標(biāo);若不存在,請說明理由.21.(10分)某市飛翔航模小隊,計劃購進(jìn)一批無人機(jī).已知3臺A型無人機(jī)和4臺B型無人機(jī)共需6400元,4臺A型無人機(jī)和3臺B型無人機(jī)共需6200元.(1)求一臺A型無人機(jī)和一臺B型無人機(jī)的售價各是多少元?(2)該航模小隊一次購進(jìn)兩種型號的無人機(jī)共50臺,并且B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍.設(shè)購進(jìn)A型無人機(jī)x臺,總費用為y元.①求y與x的關(guān)系式;②購進(jìn)A型、B型無人機(jī)各多少臺,才能使總費用最少?22.(10分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.23.(12分)某學(xué)校為了解學(xué)生的課余活動情況,抽樣調(diào)查了部分學(xué)生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如圖:(1)在這次研究中,一共調(diào)查了學(xué)生,并請補(bǔ)全折線統(tǒng)計圖;(2)該校共有2200名學(xué)生,估計該校愛好閱讀和愛好體育的學(xué)生一共有多少人?24.(14分)如圖,矩形ABCD繞點C順時針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
如圖,過點C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.2、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.3、A【解析】試題分析:根據(jù)角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A4、C【解析】
根據(jù)多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數(shù)是π,次數(shù)是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數(shù)不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關(guān)鍵是掌握多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義.5、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內(nèi)y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.6、D【解析】
設(shè)A點坐標(biāo)為(a,),則可求得B點坐標(biāo),把兩點坐標(biāo)代入拋物線的解析式可得到關(guān)于a和b的方程組,可求得b的值,則可求得二次函數(shù)的對稱軸.【詳解】解:∵A在反比例函數(shù)圖象上,∴可設(shè)A點坐標(biāo)為(a,).∵A、B兩點關(guān)于原點對稱,∴B點坐標(biāo)為(﹣a,﹣).又∵A、B兩點在二次函數(shù)圖象上,∴代入二次函數(shù)解析式可得:,解得:或,∴二次函數(shù)對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數(shù)的性質(zhì),待定系數(shù)法求二次函數(shù)解析式,根據(jù)條件先求得b的值是解題的關(guān)鍵,注意掌握關(guān)于原點對稱的兩點的坐標(biāo)的關(guān)系.7、D【解析】
根據(jù)銳角三角函數(shù)的定義可得結(jié)論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.8、B【解析】
先根據(jù)矩形的特點設(shè)出B、C的坐標(biāo),根據(jù)矩形的面積求出B點橫縱坐標(biāo)的積,由D為AB的中點求出D點的橫縱坐標(biāo),再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設(shè)此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設(shè)D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質(zhì)及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.9、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.10、A【解析】
可設(shè)其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設(shè)S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應(yīng)用;設(shè)出和為S,并求出2S進(jìn)行做差求解是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、11≤x<1【解析】
根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關(guān)鍵.12、1【解析】
兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點睛】本題考查的知識點為:同類項中相同字母的指數(shù)是相同的.13、50°【解析】【分析】直接利用圓周角定理進(jìn)行求解即可.【詳解】∵弧AB所對的圓心角是100°,∴弧AB所對的圓周角為50°,故答案為:50°.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.14、1(x﹣1)1【解析】
先提取公因式1,再根據(jù)完全平方公式進(jìn)行二次分解.【詳解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案為:1(x﹣1)1【點睛】本題考查提公因式法與公式法的綜合運用,難度不大.15、1【解析】
根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)求解即可.【詳解】由題意可得:180°?(n-2)=150°?n,
解得n=1.
故多邊形是1邊形.16、.【解析】試題分析:設(shè)正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點:1.相切兩圓的性質(zhì);2.勾股定理;3.銳角三角函數(shù)的定義17、(,)【解析】
根據(jù)相似三角形的性質(zhì)求出相似比,根據(jù)位似變換的性質(zhì)計算即可.【詳解】解:∵△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則△DEF的邊長是△ABC邊長的倍,∴點F的坐標(biāo)為(1×,×),即(,),故答案為:(,).【點睛】本題考查的是位似變換,在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或﹣k.三、解答題(共7小題,滿分69分)18、(1);(2)【解析】
(1)用樹狀圖分3次實驗列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;
(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點睛】考查了概率的求法;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關(guān)鍵.19、(1)y=﹣x2+x+2=(x﹣)2+,頂點坐標(biāo)為(,);(2)存在,點M(,0).理由見解析.【解析】
(1)由根與系數(shù)的關(guān)系,結(jié)合已知條件可得9+4m=17,解方程求得m的值,即可得求得二次函數(shù)的解析式,再求得該二次函數(shù)圖象的頂點的坐標(biāo)即可;(2)存在,將拋物線表達(dá)式和一次函數(shù)y=﹣x+2聯(lián)立并解得x=0或,即可得點A、B的坐標(biāo)為(0,2)、(,),由此求得PB=,AP=2,過點B作BM⊥AB交x軸于點M,證得△APO∽△MPB,根據(jù)相似三角形的性質(zhì)可得,代入數(shù)據(jù)即可求得MP=,再求得OM=,即可得點M的坐標(biāo)為(,0).【詳解】(1)由題意得:x1+x2=3,x1x2=﹣2m,x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,解得:m=2,拋物線的表達(dá)式為:y=﹣x2+x+2=(x﹣)2+,頂點坐標(biāo)為(,);(2)存在,理由:將拋物線表達(dá)式和一次函數(shù)y=﹣x+2聯(lián)立并解得:x=0或,∴點A、B的坐標(biāo)為(0,2)、(,),一次函數(shù)y=﹣x+2與x軸的交點P的坐標(biāo)為(6,0),∵點P的坐標(biāo)為(6,0),B的坐標(biāo)為(,),點B的坐標(biāo)為(0,2)、∴PB==,AP==2過點B作BM⊥AB交x軸于點M,∵∠MBP=∠AOP=90°,∠MPB=∠APO,∴△APO∽△MPB,∴,∴,∴MP=,∴OM=OP﹣MP=6﹣=,∴點M(,0).【點睛】本題是一道二次函數(shù)的綜合題,一元二次方程根與系數(shù)的關(guān)系、直線與拋物線的較大坐標(biāo).相似三角形的判定與性質(zhì),題目較為綜合,有一定的難度,解決第二問的關(guān)鍵是求得PB、AP的長,再利用相似三角形的性質(zhì)解決問題.20、(1)y=﹣x2﹣3x+4;(2)當(dāng)時,S有最大值;(3)點P的橫坐標(biāo)為﹣2或1或或.【解析】
(1)將代入,列方程組求出b、c的值即可;(2)連接PD,作軸交于點G,求出直線的解析式為,設(shè),則,,,當(dāng)時,S有最大值;(3)過點P作軸,設(shè),則,,根據(jù),列出關(guān)于x的方程,解之即可.【詳解】解:(1)將、代入,,∴二次函數(shù)的表達(dá)式;(2)連接,作軸交于點,如圖所示.在中,令y=0,得,∴直線AD的解析式為.設(shè),則,,∴.,∴當(dāng)時,S有最大值.(3)過點P作軸,設(shè),則,,,即,當(dāng)點P在y軸右側(cè)時,,,或,(舍去)或(舍去),當(dāng)點P在y軸左側(cè)時,x<0,,或,(舍去),或(舍去),綜上所述,存在點F,使與互余點P的橫坐標(biāo)為或或或.【點睛】本題是二次函數(shù),熟練掌握相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì)以及二次函數(shù)圖象的性質(zhì)等是解題的關(guān)鍵.21、(1)一臺A型無人機(jī)售價800元,一臺B型無人機(jī)的售價1000元;(2)①y=﹣200x+50000;②購進(jìn)A型、B型無人機(jī)各16臺、34臺時,才能使總費用最少.【解析】
(1)根據(jù)3臺A型無人機(jī)和4臺B型無人機(jī)共需6400元,4臺A型無人機(jī)和3臺B型無人機(jī)共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系式;②根據(jù)①中的函數(shù)關(guān)系式和B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍,可以求得購進(jìn)A型、B型無人機(jī)各多少臺,才能使總費用最少.【詳解】解:(1)設(shè)一臺型無人機(jī)售價元,一臺型無人機(jī)的售價元,,解得,,答:一臺型無人機(jī)售價元,一臺型無人機(jī)的售價元;(2)①由題意可得,即y與x的函數(shù)關(guān)系式為;②∵B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍,,解得,,,∴當(dāng)時,y取得最小值,此時,答:購進(jìn)型、型無人機(jī)各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和方程的知識解答.22、(1)證明見解析;(2)【解析】試題分析:(1)過點O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;
(2)連接OF,依據(jù)垂徑定理可知BE=EF=1,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長,最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.試題解析:(1)證明:過點O作OG⊥DC,垂足為G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切線.
(2)如圖所示:連接OF.
∵OA⊥BC,
∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.
∴tan∠ABC=.【點睛】本題主要考查的是切線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 進(jìn)階練14 書信作文(滿分范文)專練-新高考英語一輪總復(fù)習(xí)(上海專用)(解析版)
- 2024政工程承包施工合同書
- 2024版健身器材購置及安裝合同2篇
- 2024年茶樓損益分析及預(yù)測合同
- 2024版安全評估標(biāo)準(zhǔn)化服務(wù)協(xié)議版B版
- 2022-2024年浙江中考英語試題匯編:任務(wù)型閱讀
- 2023-2024北京市九年級數(shù)學(xué)上學(xué)期中分類匯編:旋轉(zhuǎn)(原卷版)
- 2024年美團(tuán)外賣服務(wù)人員勞務(wù)協(xié)議標(biāo)準(zhǔn)格式版B版
- 2024年資產(chǎn)評估合同2篇
- 2024年版水泥道路建設(shè)與維護(hù)協(xié)議版B版
- 2024年區(qū)域牛羊肉獨家代理銷售協(xié)議
- 2024旅行社承包經(jīng)營合同
- 地下車庫地面改造施工方案
- 成人有創(chuàng)機(jī)械通氣氣道內(nèi)吸引技術(shù)操作標(biāo)準(zhǔn)解讀
- 《護(hù)患溝通》課件
- 洗浴用品購銷合同模板
- 電能質(zhì)量-公用電網(wǎng)諧波
- 電火灶-編制說明
- 幼兒園幼小銜接方案模板
- 批評與自我批評表
- 2024年商用密碼應(yīng)用安全性評估從業(yè)人員考核試題庫-中(多選題)
評論
0/150
提交評論