版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Contents
1.Preface 2
2.Significance 2
3.PerformanceIndicators 3
4.StandardProgress 4
5.KeyTechnologiesforNetworkEnergySaving 5
5.1NetworkArchitecture 5
5.1.1SAGINArchitecture 5
5.1.2NewDistributedRANArchitecture 6
5.1.3WirelessIntelligentCloudNetwork 9
5.2AirInterfaceEnergySavingTechnologies 10
5.2.1EnergySavingTechnologiesinSpatialDomain 10
5.2.2EnergySavingTechnologiesinTimeDomain 12
5.2.3EnergySavingTechnologiesinFrequencyDomain 13
5.2.4EnergySavingTechnologiesinPowerDomain 14
5.2.5NewAirInterfaceHardware 14
5.3IntegrationwithNewTechnologies 16
5.3.1IntegrationwithAITechnologies 16
5.3.2Integrationwith6GAirInterfaceTechnologies 19
5.4OtherTechnologies 20
6.SummaryandOutlook 22
7.References 23
8.MainContributors 24
9.Abbreviations 24
1/25
2/25
1.Preface
ThisWhitePaperdescribesthesignificanceandseriouschallengesof6Gnetworkenergysaving,brieflyintroducestheenergyconsumptionperformanceindicatorsandthestandardprogressof3GPPonnetworkenergysaving,andhighlightsthekeytechnicalsolutionsfornetworkenergysavinginaspects,suchasthenetworkarchitecture,energysavingtechnologiesforairinterfaces,integrationwithnewtechnologies,andothertechnologies.Finally,thisWhitePapersummarizesthemaincontentandrelatedconclusions,andlooksforwardtothefuturedevelopmenttrends.
2.Significance
Withtherapiddevelopmentofglobaleconomyandsciencetechnology,energyissuesarebecomingmoreandmoreprominent.Globalcarbondioxideemissionhasincreasedsignificantlysince2000.Withtherapidincreaseofcarbondioxideintheair,globaltemperaturerisesrapidly,andextremeweathersuchasstormsandheatwavescausedbyglobalwarmingseriouslyendangershumanlifeandproperty.
InChina,thedualcarbongoals,thatis,peakcarbondioxideemissionby2030andcarbonneutralizationby2060areincludedinthe14thFive-YearPlan.Thedualcarbongoalsaremajorresponsibilitiesoftheglobaltocopewithclimatechangesandimportantcornerstonesforsustainabledevelopmentofindustriesandenterprises.Inthetelecommunicationsindustry,carbondioxideemissionsaremainlyfromconsumedelectricity.Theenergyconsumptionofbasestations,communicationequipmentrooms,anddatacentersaccountsforthemajorproportionofthetotalenergyconsumption.Therefore,itiscriticaltosaveenergyfortheseitems.Theenergyconsumptionofa5Gbasestationatfullloadisabout3to4timesthatofa4Gbasestation.Especiallywiththeformalcommercialuseof5Gnetworks,energyconsumptionincreasessignificantly.
Thesixtypicalscenariosandfifteencapabilityindicators[1]proposedfor6Gposehigherrequirementsonspeed,capacity,latency,positioning,anduserexperiencefrommultipledimensionssuchasintelligence,sensing,andubiquity.Thisdrives6Gtohigherfrequency,largerbandwidth,andmorecomputingpower,whichbringsseverechallengesto6Gnetworkenergysaving.
I.Higherfrequency:Thecoverageradiusof6Gmillimeterwavebasestationsisonly30%thatof5G3.5GHzbasestations,andthepoweramplificationefficiencyof6Gmillimeterwavebasestationsisabout7%to15%.Thespecificvaluevariesdependingontheprocess.Forexample,itis7%+forthesilicon
3/25
germanium(SiGe)processand15%+forthegalliumnitride(GaN)process,whichisonly1/7to1/3thatoftraditional5Gbasestations.Therefore,moreenergyisrequiredtosupportnormaloperationofthepoweramplifier(PA)of6Gmillimeterwavebasestations.
II.Largerbandwidth:Largebandwidthandmultipleantennasarethemainfactorsforincreasedpowerconsumptionof5Gbasestations.Thepowerconsumptionofa5Gbasestationis3to4timesthatofa4Gbasestation.Accordingtotheintergenerationalgrowthpatternofbandwidth,itisexpectedthatthe6Gbandwidthcanreach500MHzto1GHz.Ifthetransmitpowerperunitofbandwidthremainsunchanged,itisestimatedthatthetransmitpowerof6Gbasestationsismorethanfivetimesthatof5Gbasestations,andtheoverallpowerconsumptionofa6Gbasestationismorethanfourtimesthatofa5Gbasestation.
III.Morecomputingpower:Endogenousintelligenceisanimportantfeatureof6G.Commonlyusedartificialintelligence(AI)modelsincludeadozenofmegabytestohundredsofgigabytesofmodelparameters.Forexample,ChatGPTcontains175billionmodelparameters,anduses10,000V100GPUsformodeltraining.AccordingtoaroughcalculationbytheGlobalZeroEmissionResearchCenter(GZR),itspowerconsumptionexceeds1.68millionkilowatt-hours.Ifthenumberofvisitorsperdayis1million,about12,000kilowatt-hoursofelectricityareconsumedeveryday.
Greenandenergysavingshouldbethebasicprinciplesfordevelopingnewinnovative6Gtechnologies,soastoimprovesystemenergyefficiencyandimplementagreenandecologicaloperatingmodel.Inaddition,6Gtechnologiesshouldempowerthousandsofindustriestohelpallwalksoflifeperformdigitaltransformationthoroughly,implementgreendevelopmentstrategies,andjointlywriteanewchapterofasharedfutureforthemankind.
3.PerformanceIndicators
Energyefficiencyisanimportantperformanceindicatorforevaluatingnetworkenergyconsumption.Wecanfindeffectivemethodsfornetworkenergysavingfromthedefinitionofenergyefficiency.
Energyefficiencyisdefinedinacademicresearchastheamountofdatathatcanbetransmittedunderunitofenergyconsumedandismeasuredinbit/joule(bit/J).Toimproveenergyefficiency,wecanconsidertheamountofdatatransmittedandenergyconsumption.First,wecaneffectivelyimprovethetransmissionrate.Second,wecanreducetheenergyconsumedfortransmittingtheunitamountofdata.
4/25
Inaddition,theinternationaltelecommunicationunion(ITU)definestheenergyefficiencyoftraditional5Gnetworksastheairinterfacecapabilities[2]thatarerelatedtoprovidedservicesandusedtominimizeenergyconsumptionoftheradioaccessnetwork(RAN).Theenergyefficiencyincludestwofactors:(1)Networkside:thenumberofinformationbitstransmittedorreceivedbytheuserequipment(UE)ontheRANperunitofenergyconsumed;(2)UEside:unitofenergyconsumedbycommunicationmodules,measuredinbit/J[3].Therefore,toimprovenetworkenergyefficiencyandachievenetworkenergysaving,wecantakemeasuresfromthenetworkandUE.
As6Gappliestodiversifiedapplicationscenarioswithdifferenttransmissionperformancerequirementsonairinterfaces,thenetworkenergyefficiencycanbedefinedastheratiooftheperformanceindicatortothepowerconsumptioninaspecificscenario.Thishelpsreflecttheactualperformancerequirementsandenergyconsumptioninthescenariomorecomprehensivelyandobjectively.
Specifically,energyefficiencycanbedefinedasthedatarateperunitofenergyconsumedinhigh-speedscenarios,measuredinbps/J,thetransmissionlatencyperunitofenergyconsumedinlow-latencyscenarios,measuredins/J,andthecoveragedistanceperunitofenergyconsumedinwidecoveragescenarios,measuredinm/J.Similarly,inintegrated6Gscenarios,theenergyefficiencycanbeconsideredinmultipledimensions.Theenergyefficiencycorrespondstoperformanceindicatorsin6Gscenarios,whichhelpsevaluatetheairinterfaceperformanceperunitofenergyconsumedmorecomprehensivelyandmeetrequirementsindiversified6Gapplicationscenarios.
4.StandardProgress
3GPP,aninternationalmobilecommunicationstandardorganization,carriedoutdiscussionsonnetworkenergysavingtechnologiesinRelease18,whichincludesthestudyitem(SI)andworkitem(WI).
(1)SIStage
AttheRANmeeting#94eheldinDecember2021,theresearchcontentofnetworkenergysavingwasformallydetermined,whichmainlyincludesthefollowingthreeaspects:
.Establishanenergyconsumptionsimulationmodelforbasestationstoevaluatetheperformanceofnetworkenergysavingsolutions.
.ProvideevaluationmethodsandKPIsfornetworkenergysaving.
5/25
.ResearchandidentifyenergysavingtechnologiesonthegNBandUEsides.
TheSIstagelastsfornearlyoneyear,focusesonthesimulationmodelsandevaluationmethodsfornetworkenergysaving,andthenetworkenergysavingtechnologiesintime,frequency,spatial,andpowerdomains,UEauxiliaryinformation,andotheraspects,andprovidesthesimulationresults.RelatedresearchcontentformsTR38.864[4].
(2)WIStage
BasedontheresearchprogressintheSIstage,theWIstagefocusesonsometechnologieswithhighenergysavinggains.AttheRANmeeting#98heldinDecember2022,theworkcontentofnetworkenergysavingwasdeterminedasfollows:
.Networkenergysavingtechnologiesinspatialandpowerdomainsbasedonchannelstateinformation(CSI)enhancement
.Celldiscontinuoustransmission/reception(DTX/DRX)
.SSB-lessSCellininter-bandmulti-carrier(CA)scenarios(applicableonlytoFR1andco-locatedcells)
.SolutionforpreventinglegacyUEsfromcampingincellsimplementingRel-18networkenergysavingtechnologies
.Inter-nodebeamactivationandenhancedpagingwithinlimitedareas
.Enhancedcellhandoverprocess
SomenetworkenergysavingtechnologiesstudiedintheSIstagearenotstandardized.Tofurtherreducenetworkenergyconsumptionandlaythefoundationfor6G,3GPPRelease19furtherstandardizesnetworkenergysaving.
5.KeyTechnologiesforNetworkEnergySaving
5.1NetworkArchitecture
5.1.1SAGINArchitecture
FuturenetworkswillrealizetheInternetofEverything(IoE),andmorenaturalspaces,suchasspace,air,ground,andoceanwillbecovered,ensuringubiquitousconnectivityinalldomains.Asdigitalizationisacceleratedinallwalksoflife,digitalinfrastructureinalldomainswillbeexpandedrapidly,andthecontradictionbetweenthedevelopmentofdigitaleconomyandtheincreaseofenergyconsumptionandcarbondioxideemissionwillbecomeincreasinglyprominent.
6/25
Greenandenergysavingwillbecomeendogenousdemandsforfuture6Gnetworkarchitecture.ToachievethedevelopmentgoalsofIoE,green,andlowcarbon,the6Gnetworkarchitecturewillundergoasubversivereconstruction.Thelegacyborderedandchimney-likeRANarchitecturewillbeconvertedtothespace-air-groundintegratednetwork(SAGIN)architecturefeaturingubiquitous,green,andenergysaving.
TheSAGINarchitectureconsistsofthreelayers:satellitenetwork,airbornenetwork,andlow-altitudeandgroundnetwork,formingathree-dimensionalall-domaincoveragenetworkbasedonterrestrialnetworksandexpandedbynon-terrestrialnetworks.Theterrestrialandnon-terrestrialnetworksare
interconnectedanddeeplyintegrated,useaunifiedprotocolstack,andsupportperception-free,simplified,andubiquitousaccessofmassivevolumeofusers.Theterrestrialandnon-terrestrialnetworkscanusenewnetworkingmodessuchassupercellularandnon-cellularthatareinlinewiththedevelopmenttrendofgreencommunication.Inthesupercellulararchitecture,thecontrolplaneanduserplaneofabasestationaredecoupled,andcontrolandservicebasestationscanbedeployedindependentlyasrequired.ThecontrolbasestationconnectstoUEs,transmitscontrolsignals,andcanadoptthelargeareacoveragemode.Theservicebasestationprovidesuserswithhigh-speeddatatransmissionandcanbeflexiblydeployedasrequired.Multipleservicebasestationscanbedeployedwithinthecoverageofacontrolbasestation,andtheservicebasestationscandynamicallysleepbasedonchangesinserviceload.Inthisarchitecture,networkcoveragecanbedynamicallyadjustedbasedonservicerequirements.Whenthecoverageperformanceisnotaffected,servicebasestationscansleepatappropriatetime,ensuringmoreflexiblesleepandimprovingnetworkenergysaving.Thenon-cellulararchitectureisUE-centered,withmultipledistributedaccesspoints(APs)andacentralizedunit(CU)connectedtoallAPsdeployed.ThroughcentralizedsignalprocessingoftheCU,widelydistributedAPscanachievehigh-levelcollaborationandformasuperbasestationthatcoverstheentirearea.EachUEaccessesaspecificgroupofAPs.Spatialmacrodiversityandlowpathlosscanbeusedtoimprovethespectralefficiencyandenergyefficiencyofthenetwork.Whentherearefewusersinanarea,someAPscanbeshutdowntofurtherreducesystemenergyconsumption[5][6].
5.1.2NewDistributedRANArchitecture
Tobettersupportverticalindustriessuchasautonomousdriving,intelligentmanufacturing,andtelemedicine,therearehigherlatencyandreliabilityrequirements.Especiallyforubiquitousconnectionsoffuture6Gnetworks,the
7/25
traditionalcentralizedintelligentnetworkarchitecturecannotmeettherequirements.Therefore,theindustryhasproposedaseriesofnewdistributedRANarchitectures,whichintroduceadistributedintelligentcomputingframeworktofullyutilizethemulti-dimensionaldataandcomputingresourcesheldbyUEsandnodes.However,thenewdistributedRANarchitecturefacesmanychallenges,suchascontinuousexpansionofdistributednodes,transmissionofmassivevolumeofhigh-dimensionalmodelparameters,andsupercomputingpower.Asaresult,6Gnetworkenergyconsumptionhasbecomeoneofthemainbottlenecksforitslarge-scaledeploymentandwidespreadapplication.Thedistributed,hierarchical,andintelligentRANarchitecturedesignisadoptedtoeffectivelyreducetheenergyconsumptionofthe6GdistributedRAN[7].
AstheRANadoptsamulti-layernetworktopology,intelligentfunctionalcomponentscanbedeployedatdifferentlayers,suchasmacro/microbasestations,CU/DU,cloud/edgetocarryoutwirelessdistributedlearning.Frombottomtotop,thearchitectureconsistsoftheintelligentUElayer,thefirstintelligencelayerdeployedontheDU,thesecondintelligencelayerdeployedontheCU,thethirdintelligencelayerdeployedontheedgenode,andthefourthintelligencelayerdeployedonthecloud,asshowninthefollowingfigure.Differentintelligentlayersgeneratedifferentfunctionalconfigurationsfordifferentgoals,buildingadistributed,hierarchical,andintelligentRANarchitecturefor6Gnetworks.Onthenetwork,intelligentfunctionalcomponentscanbeflexiblyandquicklyorchestratedandused,multi-leveldataanalysisnetworkelementscanbedeployed,andadistributedcollaborativecontrolsystemcanbeformedatallnetworklayerstoachievedistributedintelligentinteractionandcollaborationbetweenwirelessnodeshorizontally[8].
8/25
Figure1SchematicDiagramofHierarchicalDeploymentofIntelligentFunctionalComponentsofa6GNetwork
InthenewdistributedRANarchitecture,federatedlearning(FL),asthemostpromisingdistributedintelligentcomputingframeworkfor6Ginfrastructure,canconductbroadermachinelearning(ML)whileprotectinguserdataprivacy.Itisexpectedtoplayanimportantrolein6Gintelligentservicesandapplications.ThroughintegrationbetweenFLandmulti-layernetworktopology,multi-levelfederatedaggregationcanbeperformed.Asshowninthefollowingfigure,athree-layernetwork(macrobasestation-microbasestation-UE)formsanFL-based,distributed,hierarchical,andintelligentRANarchitectureintheverticaldirection.Federatedaggregationcanbesplitintolow-levelfederatedaggregationatmicrobasestationsandhigh-levelfederatedaggregationatmacrobasestations.Thisensureslowcommunicationcostsandwiderdatasharing.
Figure2SchematicDiagramofFLNodeDeploymentatMultipleLayersofa6GNetwork
Specifically,ontheedgenetwork,earlymodelaggregationhaslowcommunicationcostsandcaneffectivelyalleviateuncertainmodelupdatesduetorandomlocaldata.Latermodelaggregationperformsmodelaggregationandupdatethroughhigh-levelFLservers,achievingmoreandwiderdatasharingandacceleratingconvergenceofglobalaggregation.Therefore,federatedaggregationcanbeflexiblydeployedatdifferentnetworklayersbasedontheactualneedsofthenetworkforlearningperformance,latency,capacity,energyconsumption,andotherindicatorstoachievedynamicmulti-levelFL.
Tobettersavenetworkenergy,thecommunicationfrequencyofhigh-levelglobalaggregationwithhighcommunicationcostscanbereduced.Thisreducesthecommunicationoverhead,soastoreducethetotalenergyconsumption.ComparedwiththetraditionalFLsolution,thedistributed,hierarchical,and
9/25
intelligentRANarchitecturethatintroducesmulti-levelfederatedaggregationcaneffectivelyreducenetworkenergyconsumptionunderthesamelearningaccuracy.
5.1.3WirelessIntelligentCloudNetwork
TheIMT-2030Framework[9]highlightstheimportanceofenvironmentaladaptabilityandenergysavingandemissionreductionofnetworksandUEs.Networkenergyefficiencyisaquantitativeindicatorthatattractsthemostattention,whichismeasuredinbit/Joule.
Around2010,majoroperatorsinChinasharedtheirobservationsonenergyconsumptionofmobilenetworks.Itwasfoundthathalfoftheenergyconsumptionisfromairconditionersandotherfacilities,andcentralizedRANdeviceswereproposedtoreduceenergyconsumption,whichiscalledcloudRAN(C-RAN).Thefocuscanbeontheradioorbasebandprocessing,asshowninthefollowingfigure.
Figure3C-RANSchematicDiagram
Accordingtoanalysis[10][11],C-RANiseco-friendlyinfrastructure.First,centralizedprocessingoftheC-RANarchitecturecanexponentiallyreducethenumberofbasestationsandsignificantlyreducepowerconsumptionofon-sitesupportdevices,suchasairconditioners.Second,thecooperativeradiotechnologycanreduceinterferencebetweenremoteradioheads(RRHs)andallowdenserRRHs.Therefore,thedistancefromRRHstoUEscanbeshortened,andsmallercellswithlowertransmitpowercanbedeployedwithoutaffectingnetworkcoveragequality.Theenergyrequiredforsignaltransmissionwillbereduced.ThishelpsreducepowerconsumptionintheRANandextendthebatterystandbytimeofUEs.Finally,thebasebandunit(BBU)poolisasharedresourceamongalargenumberofvirtualbasestations.Therefore,higherresourceutilizationandlowerpowerconsumptioncanbeachieved.Whenavirtualbasestationisidleatnightanddoesnotrequiremostofitsprocessingcapabilities,itcanbeshutdownorenterthelower-powerstate,whichdoesnotaffectthe24/7servicecommitment.
OpenRAN(O-RAN)inheritstheadvantagesofC-RANanddefinesopen
10/25
interfacesofO-CU/O-DU/O-RU.Thisensuresflexibleanalysisofthepowerconsumptionofdifferentnetworkentities.Thereport[12]pointsoutthatformostmobilenetworks,morethan80%ofenergyconsumptionisfromtheRAN,withtherestfromthecorenetwork,supportsystems,andrelatedcloudinfrastructure.Itisestimatedthatofthe80%energyconsumedontheRAN,approximately80%ofitisusedtopowerradios,andtheremaining20%ofitisusedfordistributedunits(DUs).Radioenergyconsumptioncanbegreatlyreducedbyusingnewtechnologies,suchasMicroSleepTxandmulti-bandradiodevicedesignandintegration.Inaddition,withahigh-performancegeneral-purposeprocessor,thecloud-basedDUconsumeslessenergyandiscompatiblewiththesoftwaredevelopmentecosystem.Torealizeitsfullpotential,theSMO/RICsoftwareiscarefullydesigned,andtherAPPmeetstheautomatedandnon-real-timenetworkmanagementrequirements.Thishelpsreduceoperatingcosts,improvenetworkperformance,andreduceenergyconsumption.
3GPPcarriedoutdiscussionsandstandardworkonnetworkenergysavingtechnologiesinRelease18andRelease19.Fordetails,seeChapter4.3GPPpointsoutthepotentialdirectionsforreducingRANenergyconsumption.TheO-RANarchitectureseparatesnetworkentitiesandprogrammablerAPPs,maximizingflexibility.Integratingnewenergysavingfeatures,theO-RANarchitectureisexpectedtobringbrightprospectsinthe6Gera.
5.2AirInterfaceEnergySavingTechnologies
5.2.1EnergySavingTechnologiesinSpatialDomain
ThepowerconsumptionoftheActiveAntennaUnit(AAU)accountsforabout80%thatofanNRbasestationandisthemaincomponentofnetworkenergyconsumption.Withtolerablesystemperformanceloss,spatialdomainenergysavingtechnologiescanadapttospatialelementsonthenetworktosignificantlyreducenetworkenergyconsumption.Dependingonthegranularity,spatialelementsmayincludeantennaelements,TxRUs,antennaports,antennapanels,andtransmissionandreceptionpoints(TRPs).Comparedwithsemi-staticspatialelementadaptation,dynamicspatialelementadaptationensuresfineradaptationgranularity,bettermatchestheserviceloadandactualtransmissionenvironment,andbetterservesUEs,thereforereducingenergyconsumptionofnetworks.
Massivemultiple-inputmultiple-output(MIMO)iswidelyusedonexisting5Gnetworksbecauseitsupportsspatialdomainmultiplexingormultipathdiversity.EventhoughmassiveMIMObringslargecapacity,italsoincreasespowerconsumptionofbasestationsduetoitslargenumberofTxRUsandrelatedhardwareprocessingunits(includingPAs).Aneffectivenetworkenergysaving
11/25
solutionturnson/offTxRUsofbasestationsbasedonthetrafficloadorthenumberofUEsserved.Asshowninthefollowingfigure,whenthenumberofUEsinacellbecomessmall,someTxRUsofbasestationscanbeturnedoffsothatthepowerconsumptionofbasestationscanbereducedwithoutaffectingthecapacity.LegacyspatialdomainshutdownsolutionscannotshutdownTxRUsdynamicallyandquickly.Forexample,thereisobviouscapacitylosswhenpowersavinggainsareobtained,orthesolutionscannotbeusedaroundtheclockbecausetheswitchingtimeforstaticshutdownistoolong.Asaresult,theantennastatusofabasestationcannotbequicklyadjustedbasedonthechannelstatus,thatis,theantennastatusdoesnotmatchthechannelstatus,resultinginagreatperformanceloss.
Figure4AdaptiveandDynamicTxRUShutdown
BasedonthedynamicloadandmultiplesetsofCSIcorrespondingtodifferentTxRUshutdownmodes,theentiretimeisdividedintomanymillisecond-levelschedulingwindows.Advanceddynamicshutdownusesadynamicschedulertomaximizeenergysavinggainswithlimitedcapacitylossbasedonenergyefficiency.Ineachschedulingwindow,allshutdownmodes(includingnoshutdown)aresimulatedandtraversed,soastoquicklyselecttheoptimalshutdownmode.Inthedynamicshutdownsolution,thehardwareresponsetimeinenergy-savingstateisakeyfactoraffectingnetworkindicatorsanduserexperience.Thehardwareresponsetimeneedstobeshortenedfromminute-leveltomillisecond-level,sothatenergyissavedallthetimeinsteadofidletimeonly.Inaddition,thenumberofhigh-levelconfigurationparametersforCSIreportsislimited.IftoomanyCSIreportsareconfiguredforadaptivechannelshutdown,theconfigurationofCSIreportsforotherusesmaybeaffected.Therefore,animportantresearchdirectioninthedynamicTxRUshutdownsolutionisCSIreportenhancementthatis,reportingmultiplesetsofCSIinoneCSIreportandreducingCSIoverhead.
ChannelshutdowncanreducethepowerconsumptionofthePA,andstaticpowerconsumptionoftheradiofrequency(RF)channel.Spatialdomainenergysavingtechnologiesbasedonchannelshutdownhaveobviousadvantagesinensuringservicecontinuity,arenotlimitedtobasestationswithlowserviceload,andareregardedasprevailingsolutionsforspatialdomainenergysaving.
12/25
Large-scaledistributedantennassupportmulti-TRP.Thatis,multipleantennapanelscanberegardedasapartoftheAAUinspatialdomain.Semi-static/dynamicadaptivemulti-TRPadjustmentisaspecialcaseofadaptivetransmissionantennaadjustment.Inactualtransmission,abettertransmissionlink(forexample,closerphysicaldistance)mayexistbetweenaUEandaTRP.AsusingmultipleTRPstotransmitdatafortheUEisnotalwaysnecessary,dynamicallyshuttingdownsomeTRPscansignificantlyreducethenetworkenergyconsumption.EspeciallyinfuturetransmissionsystemsthatdeploydistributedmassiveMIMOarraystosupportshort-rangetransmission,moreTRPsareusedfortransmission.Dynamicmulti-TRPshutdowncanbetterbalanceUEperformanceandnetworkenergyconsumption.
5.2.2EnergySavingTechnologiesinTimeDomain
Inmediumandlowsystemloadscenarios,methodssuchasdynamicandintelligentcellshutdown,intelligentDTX/DRXcoordination,andadaptivereductionofbroadcastsignaltransmissiontimeareusedtoensure
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度美容美發(fā)服務(wù)個(gè)人代理合同4篇
- 二零二五年度企業(yè)債權(quán)轉(zhuǎn)讓與債務(wù)轉(zhuǎn)移合同
- 2025年度大型建筑鋼材項(xiàng)目集中采購(gòu)合同
- 2024年銷(xiāo)售人員業(yè)績(jī)合同2篇
- 2025年度個(gè)人二手房買(mǎi)賣(mài)協(xié)議書(shū)范本:二手房交易法律咨詢(xún)合同
- 2025年度內(nèi)部員工股權(quán)激勵(lì)計(jì)劃變更與股權(quán)轉(zhuǎn)讓合同
- 二零二五年度奶粉行業(yè)市場(chǎng)分析報(bào)告定制合同
- 二零二五年度培訓(xùn)中心教師教學(xué)資源共享聘用合同
- 2025年度私人旅行規(guī)劃服務(wù)合同2篇
- 2025版抹灰班組安全生產(chǎn)責(zé)任制考核合同4篇
- 基因突變和基因重組(第1課時(shí))高一下學(xué)期生物人教版(2019)必修2
- 內(nèi)科學(xué)(醫(yī)學(xué)高級(jí)):風(fēng)濕性疾病試題及答案(強(qiáng)化練習(xí))
- 音樂(lè)劇好看智慧樹(shù)知到期末考試答案2024年
- 辦公設(shè)備(電腦、一體機(jī)、投影機(jī)等)采購(gòu) 投標(biāo)方案(技術(shù)方案)
- 查干淖爾一號(hào)井環(huán)評(píng)
- 案卷評(píng)查培訓(xùn)課件模板
- 2024年江蘇省樣卷五年級(jí)數(shù)學(xué)上冊(cè)期末試卷及答案
- 人教版初中英語(yǔ)七八九全部單詞(打印版)
- 波浪理論要點(diǎn)圖解完美版
- 金融交易數(shù)據(jù)分析與風(fēng)險(xiǎn)評(píng)估項(xiàng)目環(huán)境敏感性分析
- 牛頓環(huán)與劈尖實(shí)驗(yàn)論文
評(píng)論
0/150
提交評(píng)論