




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆重慶育才中學(xué)高考數(shù)學(xué)五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.2.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.3.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F且EF=,則下列結(jié)論中錯(cuò)誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值4.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.5.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.6.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.7.在中所對(duì)的邊分別是,若,則()A.37 B.13 C. D.8.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.10.已知是兩條不重合的直線,是兩個(gè)不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則11.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.12.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式對(duì)于定義域內(nèi)的任意恒成立,則的取值范圍為__________.14.若實(shí)數(shù)x,y滿足約束條件,則的最大值為________.15.若的展開式中所有項(xiàng)的系數(shù)之和為,則______,含項(xiàng)的系數(shù)是______(用數(shù)字作答).16.設(shè)命題:,,則:__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).18.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.19.(12分)某商場(chǎng)以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計(jì),顧客購(gòu)買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購(gòu)買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場(chǎng)銷售一件該商品,若顧客選擇分2期付款,則商場(chǎng)獲得利潤(rùn)l00元,若顧客選擇分3期付款,則商場(chǎng)獲得利潤(rùn)150元,若顧客選擇分4期付款,則商場(chǎng)獲得利潤(rùn)200元.商場(chǎng)銷售兩件該商品所獲的利潤(rùn)記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學(xué)期望的最大值.20.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA|?|PB|的值.21.(12分)如圖,三棱柱的所有棱長(zhǎng)均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.22.(10分)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線C的極坐標(biāo)方程是.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于兩點(diǎn)A,B,求線段的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點(diǎn)睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.2、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.3、D【解析】
A.通過(guò)線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)?,所以平面,又因?yàn)槠矫?,所以,故正確;B.因?yàn)?,所以,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ?,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)椋援惷嬷本€所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)?,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線所成角時(shí),將直線平移至同一平面內(nèi).4、B【解析】
先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因?yàn)椋?,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點(diǎn)睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.5、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.6、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗?,所以,?dāng)時(shí),等號(hào)成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.7、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點(diǎn)睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.8、B【解析】
先解不等式化簡(jiǎn)兩個(gè)條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對(duì)值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.9、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.10、B【解析】
根據(jù)空間中線線、線面位置關(guān)系,逐項(xiàng)判斷即可得出結(jié)果.【詳解】A選項(xiàng),若,,,,則或與相交;故A錯(cuò);B選項(xiàng),若,,則,又,是兩個(gè)不重合的平面,則,故B正確;C選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故C錯(cuò);D選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故D錯(cuò);故選B【點(diǎn)睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.11、A【解析】
若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過(guò)點(diǎn),分別畫出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問(wèn)題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.12、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡(jiǎn)后得出,即可得出的取值范圍.【詳解】解:已知對(duì)于定義域內(nèi)的任意恒成立,即對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時(shí)取等號(hào),由可知,,當(dāng)時(shí)取等號(hào),,當(dāng)有解時(shí),令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問(wèn)題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計(jì)算能力.14、3【解析】
作出可行域,可得當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),.故答案為:3.【點(diǎn)睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.15、【解析】的展開式中所有項(xiàng)的系數(shù)之和為,,,項(xiàng)的系數(shù)是,故答案為(1),(2).16、,【解析】
存在符號(hào)改任意符號(hào),結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對(duì)全(特)稱命題進(jìn)行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對(duì)于一般命題的否定只需直接否定結(jié)論即可.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見解析.【解析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號(hào)來(lái)確定函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.18、(1)見解析;(2)證明見解析.【解析】
當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計(jì)算即為導(dǎo)函數(shù)的零點(diǎn);
當(dāng)時(shí),分類討論x的范圍,可令新函數(shù),計(jì)算新函數(shù)的最值可證明.【詳解】(1)的定義域?yàn)楫?dāng)時(shí),,,易知為上的增函數(shù),又,所以是的唯一零點(diǎn);(2)證明:當(dāng)時(shí),,①若,則,所以成立,②若,設(shè),則,令,則,因?yàn)?,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點(diǎn)的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.19、(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數(shù)學(xué)期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設(shè)購(gòu)買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨(dú)立重復(fù)事件的特點(diǎn)得出,利用二項(xiàng)分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購(gòu)買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購(gòu)買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當(dāng)時(shí),的最大值為280,所以的數(shù)學(xué)期望的最大值為280.【點(diǎn)睛】本題考查獨(dú)立重復(fù)事件和二項(xiàng)分布的應(yīng)用,以及離散型分布列和數(shù)學(xué)期望,考查計(jì)算能力.20、(1)直線的普通方程,圓的直角坐標(biāo)方程:.(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y﹣3=0.圓C的極坐標(biāo)方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y2﹣4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 呼倫貝爾職業(yè)技術(shù)學(xué)院《數(shù)字造型藝術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢交通職業(yè)學(xué)院《工程設(shè)計(jì)與分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 漳州衛(wèi)生職業(yè)學(xué)院《醫(yī)用統(tǒng)計(jì)方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 中南民族大學(xué)《職業(yè)民主管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江中考科學(xué)模擬試卷含答案(5份)
- 2025屆天津市寧河區(qū)北淮淀鎮(zhèn)中學(xué)初三年級(jí)開學(xué)摸底考試英語(yǔ)試題試卷含答案
- 開魯縣2025年三年級(jí)數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析
- 宿遷學(xué)院《水污染控制工程(二)》2023-2024學(xué)年第二學(xué)期期末試卷
- 宿遷澤達(dá)職業(yè)技術(shù)學(xué)院《教育美學(xué):發(fā)現(xiàn)文藝作品中的教育學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024-2025學(xué)年吉林省汪清縣四中高三(下)調(diào)研英語(yǔ)試題試卷含解析
- 【2025新教材】教科版一年級(jí)科學(xué)下冊(cè)全冊(cè)教案【含反思】
- 第16課《有為有不為 》課件-2024-2025學(xué)年統(tǒng)編版語(yǔ)文七年級(jí)下冊(cè)
- 火鍋店創(chuàng)業(yè)計(jì)劃書:營(yíng)銷策略
- 交通大數(shù)據(jù)分析-深度研究
- 基礎(chǔ)護(hù)理學(xué)試題及標(biāo)準(zhǔn)答案
- DB11-T 1754-2024 老年人能力綜合評(píng)估規(guī)范
- 招聘團(tuán)隊(duì)管理
- 【課件】用坐標(biāo)描述簡(jiǎn)單幾何圖形+課件人教版七年級(jí)數(shù)學(xué)下冊(cè)
- 電商運(yùn)營(yíng)崗位聘用合同樣本
- 2023年浙江省杭州市上城區(qū)中考數(shù)學(xué)一模試卷
- 租賃鉆桿合同范例
評(píng)論
0/150
提交評(píng)論