2023-2024學(xué)年鹽城市亭湖區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁(yè)
2023-2024學(xué)年鹽城市亭湖區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁(yè)
2023-2024學(xué)年鹽城市亭湖區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁(yè)
2023-2024學(xué)年鹽城市亭湖區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁(yè)
2023-2024學(xué)年鹽城市亭湖區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年鹽城市亭湖區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一束平行太陽(yáng)光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°2.點(diǎn)P(1,﹣2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)3.實(shí)數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c4.已知矩形ABCD中,AB=3,BC=4,E為BC的中點(diǎn),以點(diǎn)B為圓心,BA的長(zhǎng)為半徑畫(huà)圓,交BC于點(diǎn)F,再以點(diǎn)C為圓心,CE的長(zhǎng)為半徑畫(huà)圓,交CD于點(diǎn)G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π5.下列四個(gè)實(shí)數(shù)中是無(wú)理數(shù)的是()A.2.5B.1036.如圖,為測(cè)量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫(huà)一個(gè)邊長(zhǎng)為4m的正方形,使不規(guī)則區(qū)域落在正方形內(nèi).現(xiàn)向正方形內(nèi)隨機(jī)投擲小球(假設(shè)小球落在正方形內(nèi)每一點(diǎn)都是等可能的),經(jīng)過(guò)大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計(jì)不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m27.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長(zhǎng)是()A. B. C. D.8.下列運(yùn)算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4 C. D.(a2b)3=a5b39.在直角坐標(biāo)系中,已知點(diǎn)P(3,4),現(xiàn)將點(diǎn)P作如下變換:①將點(diǎn)P先向左平移4個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P1;②作點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P2;③將點(diǎn)P繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)P3,則P1,P2,P3的坐標(biāo)分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)10.小明乘出租車(chē)去體育場(chǎng),有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車(chē)速比走路線一時(shí)的平均車(chē)速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)題意,得A.25x-C.30(1+80%)x-二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F(xiàn)分別是線段BC,AC的中點(diǎn),連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.(3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),延長(zhǎng)FC交AB于點(diǎn)D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).12.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點(diǎn),將Rt△ABC沿CD折疊,使點(diǎn)B落在AC邊上的B′處,則∠ADB′等于_____.13.在一個(gè)不透明的口袋中裝有4個(gè)紅球和若干個(gè)白球,它們除顏色外其他完全相同,通過(guò)多次摸球試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有_____個(gè).14.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長(zhǎng)為_(kāi)_______.15.設(shè)[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結(jié)論中正確的是______.(填寫(xiě)所有正確結(jié)論的序號(hào))①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實(shí)數(shù)x,使[x)?x=0.5成立.16.如圖,點(diǎn)A在反比例函數(shù)y=(x>0)上,以O(shè)A為邊作正方形OABC,邊AB交y軸于點(diǎn)P,若PA:PB=1:2,則正方形OABC的面積=_____.三、解答題(共8題,共72分)17.(8分)“食品安全”受到全社會(huì)的廣泛關(guān)注,濟(jì)南市某中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:(1)接受問(wèn)卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);(4)若從對(duì)食品安全知識(shí)達(dá)到“了解”程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.18.(8分)在數(shù)學(xué)實(shí)踐活動(dòng)課上,老師帶領(lǐng)同學(xué)們到附近的濕地公園測(cè)量園內(nèi)雕塑的高度.用測(cè)角儀在A處測(cè)得雕塑頂端點(diǎn)C′的仰角為30°,再往雕塑方向前進(jìn)4米至B處,測(cè)得仰角為45°.問(wèn):該雕塑有多高?(測(cè)角儀高度忽略不計(jì),結(jié)果不取近似值.)19.(8分)(1)計(jì)算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡(jiǎn),再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.20.(8分)如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在一象限,點(diǎn)P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把△AOP繞著點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使邊AO與AB重合,連接OD,PD,得△OPD。(1)當(dāng)t=時(shí),求DP的長(zhǎng)(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,依照條件所形成的△OPD面積為S①當(dāng)t>0時(shí),求S與t之間的函數(shù)關(guān)系式②當(dāng)t≤0時(shí),要使s=,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).21.(8分)先化簡(jiǎn),再求值:,其中a是方程a2+a﹣6=0的解.22.(10分)如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).求k、m的值;已知點(diǎn)P(n,n)(n>0),過(guò)點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過(guò)點(diǎn)P作平行于y軸的直線,交函數(shù)的圖象于點(diǎn)N.①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.23.(12分)某商店老板準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)的足球共100只,已知A型號(hào)足球進(jìn)價(jià)每只40元,B型號(hào)足球進(jìn)價(jià)每只60元.(1)若該店老板共花費(fèi)了5200元,那么A、B型號(hào)足球各進(jìn)了多少只;(2)若B型號(hào)足球數(shù)量不少于A型號(hào)足球數(shù)量的,那么進(jìn)多少只A型號(hào)足球,可以讓該老板所用的進(jìn)貨款最少?24.為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽(yáng)光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點(diǎn)睛】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.2、C【解析】關(guān)于y軸對(duì)稱(chēng)的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(﹣1,﹣2),故選C.【點(diǎn)睛】本題考查了關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo),正確地記住關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征是關(guān)鍵.關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù).3、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項(xiàng)判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項(xiàng)A不符合題意;∵c<b<0,∴b+c<0,∴選項(xiàng)B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項(xiàng)C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項(xiàng)D符合題意.故選D.點(diǎn)睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù).4、D【解析】

根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點(diǎn),∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點(diǎn)睛】此題考查扇形面積的計(jì)算,矩形的性質(zhì)及面積的計(jì)算.5、C【解析】本題主要考查了無(wú)理數(shù)的定義.根據(jù)無(wú)理數(shù)的定義:無(wú)限不循環(huán)小數(shù)是無(wú)理數(shù)即可求解.解:A、2.5是有理數(shù),故選項(xiàng)錯(cuò)誤;B、103C、π是無(wú)理數(shù),故選項(xiàng)正確;D、1.414是有理數(shù),故選項(xiàng)錯(cuò)誤.故選C.6、D【解析】

首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【詳解】∵經(jīng)過(guò)大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長(zhǎng)為4m,∴面積為16m2設(shè)不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【點(diǎn)睛】利用頻率估計(jì)概率.7、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據(jù)相似三角形的性質(zhì)可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點(diǎn)睛】本題考查了相似三角形的判定及性質(zhì)定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.8、B【解析】

根據(jù)同底數(shù)冪的除法,合并同類(lèi)項(xiàng),積的乘方的運(yùn)算法則進(jìn)行逐一運(yùn)算即可.【詳解】解:A、5ab﹣=4ab,此選項(xiàng)運(yùn)算錯(cuò)誤,B、a6÷a2=a4,此選項(xiàng)運(yùn)算正確,C、,選項(xiàng)運(yùn)算錯(cuò)誤,D、(a2b)3=a6b3,此選項(xiàng)運(yùn)算錯(cuò)誤,故選B.【點(diǎn)睛】此題考查了同底數(shù)冪的除法,合并同類(lèi)項(xiàng),積的乘方,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、D【解析】

把點(diǎn)P的橫坐標(biāo)減4,縱坐標(biāo)減3可得P1的坐標(biāo);讓點(diǎn)P的縱坐標(biāo)不變,橫坐標(biāo)為原料坐標(biāo)的相反數(shù)可得P2的坐標(biāo);讓點(diǎn)P的縱坐標(biāo)的相反數(shù)為P3的橫坐標(biāo),橫坐標(biāo)為P3的縱坐標(biāo)即可.【詳解】∵點(diǎn)P(3,4),將點(diǎn)P先向左平移4個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P1,∴P1的坐標(biāo)為(﹣1,1).∵點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)是P2,∴P2(﹣3,4).∵將點(diǎn)P繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)P3,∴P3(﹣4,3).故選D.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的變化;用到的知識(shí)點(diǎn)為:左右平移只改變點(diǎn)的橫坐標(biāo),左減右加,上下平移只改變點(diǎn)的縱坐標(biāo),上加下減;兩點(diǎn)關(guān)于y軸對(duì)稱(chēng),縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù);(a,b)繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的點(diǎn)的坐標(biāo)為(﹣b,a).10、A【解析】若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車(chē)速比走路線一時(shí)的平均車(chē)速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),25故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(1)互相垂直;;(2)結(jié)論仍然成立,證明見(jiàn)解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長(zhǎng),進(jìn)而得出答案;

(2)利用已知得出△BEC∽△AFC,進(jìn)而得出∠1=∠2,即可得出答案;

(3)過(guò)點(diǎn)D作DH⊥BC于H,則DB=4-(6-2)=2-2,進(jìn)而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進(jìn)而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點(diǎn)E,F(xiàn)分別是線段BC,AC的中點(diǎn),

∴=;(2))如圖2,∵點(diǎn)E,F(xiàn)分別是線段BC,AC的中點(diǎn),

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長(zhǎng)BE交AC于點(diǎn)O,交AF于點(diǎn)M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過(guò)點(diǎn)D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.12、40°.【解析】

∵將Rt△ABC沿CD折疊,使點(diǎn)B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.13、1.【解析】

由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進(jìn)而求出白球個(gè)數(shù)即可.【詳解】設(shè)白球個(gè)數(shù)為:x個(gè),∵摸到紅色球的頻率穩(wěn)定在25%左右,∴口袋中得到紅色球的概率為25%,∴44+x=1解得:x=1,故白球的個(gè)數(shù)為1個(gè).故答案為:1.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,根據(jù)大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.14、【解析】試題分析:因?yàn)镺C=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點(diǎn):1.解直角三角形、2.垂徑定理.15、④【解析】

根據(jù)題意[x)表示大于x的最小整數(shù),結(jié)合各項(xiàng)進(jìn)行判斷即可得出答案.【詳解】①[0)=1,故本項(xiàng)錯(cuò)誤;②[x)?x>0,但是取不到0,故本項(xiàng)錯(cuò)誤;③[x)?x?1,即最大值為1,故本項(xiàng)錯(cuò)誤;④存在實(shí)數(shù)x,使[x)?x=0.5成立,例如x=0.5時(shí),故本項(xiàng)正確.故答案是:④.【點(diǎn)睛】此題考查運(yùn)算的定義,解題關(guān)鍵在于理解題意的運(yùn)算法則.16、1.【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長(zhǎng).【詳解】解:由題意可得:OA=AB,設(shè)AP=a,則BP=2a,OA=3a,設(shè)點(diǎn)A的坐標(biāo)為(m,),作AE⊥x軸于點(diǎn)E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點(diǎn)A的坐標(biāo)為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點(diǎn)睛】本題考查了反比例函數(shù)圖象點(diǎn)的坐標(biāo)特征、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題(共8題,共72分)17、(1)60,90°;(2)補(bǔ)圖見(jiàn)解析;(3)300;(4).【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用總?cè)藬?shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.詳解:(1)60;90°.(2)補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示.(3)對(duì)食品安全知識(shí)達(dá)到“了解”和“基本了解”的學(xué)生所占比例為,由樣本估計(jì)總體,該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個(gè)男生和1個(gè)女生的情況有8種,所以恰好選中1個(gè)男生和1個(gè)女生的概率是.點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹(shù)狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運(yùn)用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.18、該雕塑的高度為(2+2)米.【解析】

過(guò)點(diǎn)C作CD⊥AB,設(shè)CD=x,由∠CBD=45°知BD=CD=x米,根據(jù)tanA=列出關(guān)于x的方程,解之可得.【詳解】解:如圖,過(guò)點(diǎn)C作CD⊥AB,交AB延長(zhǎng)線于點(diǎn)D,設(shè)CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點(diǎn)睛】本題主要考查解直角三角形的應(yīng)用-仰角俯角問(wèn)題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握三角函數(shù)的應(yīng)用.19、(1)6;(2)﹣(x+1),1.【解析】

(1)原式=3+1﹣2×+3=6(2)由題意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)當(dāng)x=﹣1時(shí),x+1=0,分式無(wú)意義,當(dāng)x=﹣2時(shí),原式=120、(1)DP=;(2)①;②.【解析】

(1)先判斷出△ADP是等邊三角形,進(jìn)而得出DP=AP,即可得出結(jié)論;

(2)①先求出GH=2,進(jìn)而求出DG,再得出DH,即可得出結(jié)論;

②分兩種情況,利用三角形的面積建立方程求解即可得出結(jié)論.【詳解】解:(1)∵A(0,4),

∴OA=4,

∵P(t,0),

∴OP=t,

∵△ABD是由△AOP旋轉(zhuǎn)得到,

∴△ABD≌△AOP,

∴AP=AD,∠DAB=∠PAO,

∴∠DAP=∠BAO=60°,

∴△ADP是等邊三角形,

∴DP=AP,

∵,

∴,

∴;(2)①當(dāng)t>0時(shí),如圖1,BD=OP=t,

過(guò)點(diǎn)B,D分別作x軸的垂線,垂足于F,H,過(guò)點(diǎn)B作x軸的平行線,分別交y軸于點(diǎn)E,交DH于點(diǎn)G,

∵△OAB為等邊三角形,BE⊥y軸,

∴∠ABP=30°,AP=OP=2,

∵∠ABD=90°,

∴∠DBG=60°,

∴DG=BD?sin60°=,

∵GH=OE=2,

∴,

∴;②當(dāng)t≤0時(shí),分兩種情況:

∵點(diǎn)D在x軸上時(shí),如圖2在Rt△ABD中,,

(1)當(dāng)時(shí),如圖3,BD=OP=-t,,∴,

∴,

∴或,

∴或,

(2)當(dāng)時(shí),如圖4,BD=OP=-t,,

∴,

∴∴或(舍)∴.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關(guān)鍵.21、.【解析】

先計(jì)算括號(hào)里面的,再利用除法化簡(jiǎn)原式,【詳解】,=,=,=,=,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,當(dāng)a=﹣3時(shí),原式=.【點(diǎn)睛】本題考查了分式的化簡(jiǎn)求值及一元二次方程的解,解題的關(guān)鍵是熟練掌握分式的混合運(yùn)算.22、(1)k的值為3,m的值為1;(2)0<n≤1或n≥3.【解析】分析:(1)將A點(diǎn)代入y=x-2中即可求出m的值,然后將A的坐標(biāo)代入反比例函數(shù)中即可求出k的值.(2)①當(dāng)n=1時(shí),分別求出M、N兩點(diǎn)的坐標(biāo)即可求出PM與PN的關(guān)系;②由題意可知:P的坐標(biāo)為(n,n),由于PN≥PM,從而可知PN≥2,根據(jù)圖象可求出n的范圍.詳解:(1)將A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),將A(3,1)代入y=,∴k=3×1=3,m的值為1.(2)①當(dāng)n=1時(shí),P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論