版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河南省九校高三第四次模擬考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或2.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.3.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.5.定義在R上的函數(shù)滿足,為的導函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.6.已知復數(shù)z滿足(其中i為虛數(shù)單位),則復數(shù)z的虛部是()A. B.1 C. D.i7.下圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.8.已知隨機變量服從正態(tài)分布,,()A. B. C. D.9.展開項中的常數(shù)項為A.1 B.11 C.-19 D.5110.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位11.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.12.如圖,設為內(nèi)一點,且,則與的面積之比為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.14.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.15.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.16.已知全集,集合則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養(yǎng),引領學生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學校隨機抽取了120名學生做調(diào)查,統(tǒng)計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數(shù),求5的分布列及數(shù)學期望附表及公式:.18.(12分)設等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.19.(12分)設函數(shù),.(1)解不等式;(2)若對任意的實數(shù)恒成立,求的取值范圍.20.(12分)在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.21.(12分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.22.(10分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發(fā)、行進步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯(lián)立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.2、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實根,從而可得.3、D【解析】
根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得①,當,由導數(shù)與函數(shù)單調(diào)性的關系可得,在上恒成立,變形可得②,再結合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當,若為增函數(shù),則①,
當,若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應用,注意分段函數(shù)單調(diào)性的性質(zhì).4、B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.5、C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數(shù)單調(diào)性和不等式的基礎知識,屬于中檔題.6、A【解析】
由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復數(shù)的概念,屬于基礎題.7、D【解析】
根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數(shù)的基本關系式,考查二倍角公式,屬于基礎題.8、B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.9、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.10、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數(shù)圖象平移的應用問題,屬于基礎題.11、C【解析】
先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.12、A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.14、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數(shù),則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數(shù)的化簡,三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識的應用能力和計算能力,是基礎題.15、0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).16、【解析】
根據(jù)補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)男生女生總計喜歡閱讀中國古典文學423072不喜歡閱讀中國古典文學301848總計7248120所以,沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)設參加座談會的男生中喜歡中國古典文學的人數(shù)為,女生中喜歡古典文學的人數(shù)為,則.且;;.所以的分布列為則.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查隨機變量分布列和數(shù)學期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.18、(1)(2);時,取得最小值【解析】
(1)設等差數(shù)列的公差為,由,結合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎題.19、(1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可.試題解析:整理得解得①②解得③,且無限趨近于4,綜上的取值范圍是20、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設、對應的參數(shù)分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點,傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設、對應的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數(shù)方程的幾何意義的應用,屬于中檔題.21、(1)曲線的標準方程為.拋物線的標準方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點P的軌跡W是橢圓,寫出橢圓的標準方程,根據(jù)平面向量數(shù)量積運算和點A在拋物線上求出拋物線C的標準方程;(2)設出點P的坐標,再表示出點N和Q的坐標,根據(jù)題意求出的值,即可判斷結果是否成立.【詳解】(1)由題知,,所以,因此動點的軌跡是以,為焦點的橢圓,又知,,所以曲線的標準方程為.又由題知,所以,所以,又因為點在拋物線上,所以,所以拋物線的標準方程為.(2)設,,由題知,所以,即,所以,又因為,,所以,所以為定值,且定值為1.【點睛】本題考查了圓錐曲線的定義與性質(zhì)的應用問題,考查拋物線的幾何性質(zhì)及點在曲線上的代換,也考查了推理與運算能力,是中檔題.22、(1),,,(2)【解析】
(1)根據(jù)機器人的進行規(guī)律可確定、、的值;(2)首先根據(jù)機器人行進規(guī)則知機器人沿軸行進步,必須沿軸負方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024正規(guī)個人基金份額購買合同范本3篇
- 二零二四年度建筑設計委托合同范本
- 2024攤位轉(zhuǎn)讓合同范本
- 2025年度城市應急響應安保支援協(xié)議3篇
- 2024年餐飲服務協(xié)議:快餐店顧客權益保障
- 2025年度綠色環(huán)保型廁所改造施工合同范本3篇
- 長沙學院《影視攝影技術》2023-2024學年第一學期期末試卷
- 2適用于不同行業(yè)的2024年版承包合同
- 教育教學行業(yè)教學理念培訓實踐
- 青春奮進社團助力實現(xiàn)夢想計劃
- 2023年浙江大學醫(yī)學院附屬邵逸夫醫(yī)院招聘考試真題及答案
- (正式版)SHT 3223-2024 石油化工給水排水泵站設計規(guī)范
- 自愈合防水施工工藝
- DL T 5745-2016 電力建設工程工程量清單計價規(guī)范
- DB13T5614-2022 變配電室安全管理規(guī)范
- 二手車出口實施方案
- 化妝品活性成分作用機制研究
- 獅子王臺詞本
- 《紀檢監(jiān)察培訓課件》課件
- 15crmo鋼焊接工藝-機構培訓
- 利用Stber法制備納米結構SiO2粒子
評論
0/150
提交評論