2023-2024學年內蒙古自治區(qū)平煤高級中學高三3月份模擬考試數學試題含解析_第1頁
2023-2024學年內蒙古自治區(qū)平煤高級中學高三3月份模擬考試數學試題含解析_第2頁
2023-2024學年內蒙古自治區(qū)平煤高級中學高三3月份模擬考試數學試題含解析_第3頁
2023-2024學年內蒙古自治區(qū)平煤高級中學高三3月份模擬考試數學試題含解析_第4頁
2023-2024學年內蒙古自治區(qū)平煤高級中學高三3月份模擬考試數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年內蒙古自治區(qū)平煤高級中學高三3月份模擬考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題,那么為()A. B.C. D.2.將函數的圖象向右平移個周期后,所得圖象關于軸對稱,則的最小正值是()A. B. C. D.3.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.4.已知無窮等比數列的公比為2,且,則()A. B. C. D.5.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.6.設函數定義域為全體實數,令.有以下6個論斷:①是奇函數時,是奇函數;②是偶函數時,是奇函數;③是偶函數時,是偶函數;④是奇函數時,是偶函數⑤是偶函數;⑥對任意的實數,.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤7.等比數列的前項和為,若,,,,則()A. B. C. D.8.已知函數(),若函數有三個零點,則的取值范圍是()A. B.C. D.9.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④10.《易經》包含著很多哲理,在信息學、天文學中都有廣泛的應用,《易經》的博大精深,對今天的幾何學和其它學科仍有深刻的影響.下圖就是易經中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.11.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.512.若θ是第二象限角且sinθ=,則=A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.14.已知等比數列的各項均為正數,,則的值為________.15.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.16.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(m為參數),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.19.(12分)已知等差數列的前n項和為,,公差,、、成等比數列,數列滿足.(1)求數列,的通項公式;(2)已知,求數列的前n項和.20.(12分)已知函數.(1)若,求函數的單調區(qū)間;(2)若恒成立,求實數的取值范圍.21.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.22.(10分)在中,角的對邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.2、D【解析】

由函數的圖象平移變換公式求出變換后的函數解析式,再利用誘導公式得到關于的方程,對賦值即可求解.【詳解】由題意知,函數的最小正周期為,即,由函數的圖象平移變換公式可得,將函數的圖象向右平移個周期后的解析式為,因為函數的圖象關于軸對稱,所以,即,所以當時,有最小正值為.故選:D【點睛】本題考查函數的圖象平移變換公式和三角函數誘導公式及正余弦函數的性質;熟練掌握誘導公式和正余弦函數的性質是求解本題的關鍵;屬于中檔題、??碱}型.3、C【解析】

畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,

該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.4、A【解析】

依據無窮等比數列求和公式,先求出首項,再求出,利用無窮等比數列求和公式即可求出結果。【詳解】因為無窮等比數列的公比為2,則無窮等比數列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數列求和公式的應用。5、C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.6、A【解析】

根據函數奇偶性的定義即可判斷函數的奇偶性并證明.【詳解】當是偶函數,則,所以,所以是偶函數;當是奇函數時,則,所以,所以是偶函數;當為非奇非偶函數時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.7、D【解析】試題分析:由于在等比數列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數列.8、A【解析】

分段求解函數零點,數形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數零點的個數求參數范圍,屬中檔題.9、C【解析】

根據線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎題.10、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎題.11、A【解析】

根據幾何體分析正視圖和側視圖的形狀,結合題干中的數據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.12、B【解析】由θ是第二象限角且sinθ=知:,.所以.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

由二次方程有解的條件,結合輔助角公式和正弦函數的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.14、【解析】

運用等比數列的通項公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點睛】本題考查等比數列的通項公式及應用,考查計算能力,屬于基礎題.15、{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.16、.【解析】

先求圓的半徑,四邊形的最小面積,轉化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關系,及與長度有關的幾何概型,考查了學生分析問題的能力,難度一般.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】

選擇①時:,,計算,根據正弦定理得到,計算面積得到答案;選擇②時,,,故,為鈍角,故無解;選擇③時,,根據正弦定理解得,,根據正弦定理得到,計算面積得到答案.【詳解】選擇①時:,,故.根據正弦定理:,故,故.選擇②時,,,故,為鈍角,故無解.選擇③時,,根據正弦定理:,故,解得,.根據正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學生的計算能力和綜合應用能力.18、(1)l:,C方程為;(2)=【解析】

(1)直接利用轉換關系,把參數方程極坐標方程和直角坐標方程之間進行轉換.

(2)利用一元二次方程根和系數關系式的應用求出結果.【詳解】(1)曲線C的參數方程為(m為參數),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數方程為(t為參數),代入得到(t1和t2為P、Q對應的參數),所以,,所以=.【點睛】本題考查參數方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.19、(1),();(2).【解析】

(1)根據是等差數列,,、、成等比數列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當時,.②當時,.【點睛】此題等差數列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉化思想,屬于一般性題目.20、(1)增區(qū)間為,減區(qū)間為;(2).【解析】

(1)將代入函數的解析式,利用導數可得出函數的單調區(qū)間;(2)求函數的導數,分類討論的范圍,利用導數分析函數的單調性,求出函數的最值可判斷是否恒成立,可得實數的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數為減函數;當時,,則,此時,函數為增函數.所以,函數的增區(qū)間為,減區(qū)間為;(2),則,.①當時,即當時,,由,得,此時,函數為增函數;由,得,此時,函數為減函數.則,不合乎題意;②當時,即時,.不妨設,其中,令,則或.(i)當時,,當時,,此時,函數為增函數;當時,,此時,函數為減函數;當時,,此時,函數為增函數.此時,而,構造函數,,則,所以,函數在區(qū)間上單調遞增,則,即當時,,所以,.,符合題意;②當時,,函數在上為增函數,,符合題意;③當時,同理可得函數在上單調遞增,在上單調遞減,在上單調遞增,此時,則,解得.綜上所述,實數的取值范圍是.【點睛】本題考查導數知識的運用,考查函數的單調性與最值,考查恒成立問題,正確求導和分類討論是關鍵,屬于難題.21、(1);(2)4【解析】

(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設,,在中,由正弦定理得,,∴,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論