版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西河池市2023-2024學(xué)年高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.2.的展開式中的一次項(xiàng)系數(shù)為()A. B. C. D.3.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個(gè)公共點(diǎn),且橢圓的焦距為2,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.4.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.5.在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.6.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.7.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種8.在棱長(zhǎng)為a的正方體中,E、F、M分別是AB、AD、的中點(diǎn),又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時(shí),平面 D.當(dāng)m變化時(shí),直線l的位置不變9.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④10.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.11.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計(jì)圖如下面的條形圖.該教師退休后加強(qiáng)了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計(jì)圖如下面的折線圖.已知目前的月就醫(yī)費(fèi)比剛退休時(shí)少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元12.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.2020二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓內(nèi)一定點(diǎn),經(jīng)過引一條弦,使此弦被點(diǎn)平分,則此弦所在的直線方程為________________.14.已知F為拋物線C:x2=8y的焦點(diǎn),P為C上一點(diǎn),M(﹣4,3),則△PMF周長(zhǎng)的最小值是_____.15.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則__________.16.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.18.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.19.(12分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.20.(12分)如圖,平面分別是上的動(dòng)點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時(shí),求平面與平面所成的二面角的余弦值.21.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時(shí),恒成立,求的取值范圍.22.(10分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,是基礎(chǔ)題.2、B【解析】
根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項(xiàng)系數(shù)為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.3、B【解析】
設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進(jìn)而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查橢圓和雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡(jiǎn)單幾何性質(zhì),要注意雙曲線焦點(diǎn)位置,屬于中檔題.4、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.5、D【解析】
取AC中點(diǎn)N,由題意得即為二面角的平面角,過點(diǎn)B作于O,易得點(diǎn)O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點(diǎn)N,連接BN,DN,則,,即為二面角的平面角,過點(diǎn)B作于O,則平面ACD,由,可得,,,即點(diǎn)O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點(diǎn)睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.6、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.7、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)線面平行與垂直的判定與性質(zhì)逐個(gè)分析即可.【詳解】因?yàn)?所以,因?yàn)镋、F分別是AB、AD的中點(diǎn),所以,所以,因?yàn)槊婷?所以.選項(xiàng)A、D顯然成立;因?yàn)?平面,所以平面,因?yàn)槠矫?所以,所以B項(xiàng)成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項(xiàng)不成立.故選:C【點(diǎn)睛】本題考查直線與平面的位置關(guān)系.屬于中檔題.9、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.10、B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點(diǎn)睛】本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.11、D【解析】
設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點(diǎn)睛】本題考查由條形圖和折線圖等基礎(chǔ)知識(shí)解決實(shí)際問題,屬于基礎(chǔ)題.12、C【解析】
首先,根據(jù)二倍角公式和輔助角公式化簡(jiǎn)函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點(diǎn)睛】本題重點(diǎn)考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識(shí),掌握輔助角公式化簡(jiǎn)函數(shù)解析式是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),利用點(diǎn)差法可求得直線的斜率,進(jìn)而可求得直線的點(diǎn)斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),由于點(diǎn)為弦的中點(diǎn),則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點(diǎn)睛】本題考查利用弦的中點(diǎn)求弦所在直線的方程,一般利用點(diǎn)差法,也可以利用韋達(dá)定理設(shè)而不求法來解答,考查計(jì)算能力,屬于中等題.14、5【解析】
△PMF的周長(zhǎng)最小,即求最小,過做拋物線準(zhǔn)線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點(diǎn),P為C上一點(diǎn),M(﹣4,3),拋物線C:x2=8y的焦點(diǎn)為F(0,2),準(zhǔn)線方程為y=﹣2.過作準(zhǔn)線的垂線,垂足為,則有,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立,所以△PMF的周長(zhǎng)最小值為55.故答案為:5.【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.15、【解析】
根據(jù)的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因?yàn)榈恼归_式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點(diǎn)睛】本題主要考查二項(xiàng)式的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因?yàn)殛P(guān)于的方程的兩根都大于2,令所以有,解得,所以.【點(diǎn)睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于??碱}型.18、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對(duì)值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對(duì)值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.19、(1)證明見解析;(2).【解析】
(1)取中點(diǎn),連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)椋矫?,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過N作于E,則平面,因?yàn)槠矫嫫矫?,,平面平面,平面,所以平面,又因?yàn)槠矫妫?,由于,所以所以,所?【點(diǎn)睛】本題考查線面垂直,考查三棱錐體積的計(jì)算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題.20、(1)見解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因?yàn)槠矫妫?,又,所以平面,所以,又,所?若平面平面,則平面,所以,由且,又,所以.以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個(gè)法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),屬于中檔題.21、(1)見解析;(2).【解析】
(1)對(duì)求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個(gè)不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)椋?,所以,存在使得,即.所?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 四股東股份合作協(xié)議書2025年度發(fā)展合作版2篇
- 二零二五年度苗木苗圃定向種植與碳匯交易合同范本4篇
- 2025年中國示教顯微鏡行業(yè)市場(chǎng)前瞻與投資戰(zhàn)略規(guī)劃分析報(bào)告
- 2024-2025年中國網(wǎng)絡(luò)團(tuán)購行業(yè)市場(chǎng)調(diào)查研究及投資戰(zhàn)略咨詢報(bào)告
- 2025年氣體管路閥項(xiàng)目投資可行性研究分析報(bào)告
- 2025年中國八角茴香行業(yè)未來趨勢(shì)預(yù)測(cè)分析及投資規(guī)劃研究建議報(bào)告
- 2025年度智慧城市建設(shè)合同服務(wù)追加協(xié)議4篇
- 2025年實(shí)驗(yàn)型超聲波清洗機(jī)行業(yè)深度研究分析報(bào)告
- 混凝土生產(chǎn)過程中碳排放減少目標(biāo)合同(2025版)3篇
- 二零二五年度市政基礎(chǔ)設(shè)施建設(shè)承包合同范本4篇
- 公司組織架構(gòu)圖(可編輯模版)
- 1汽輪機(jī)跳閘事故演練
- 陜西省銅川市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 禮品(禮金)上交登記臺(tái)賬
- 普通高中英語課程標(biāo)準(zhǔn)詞匯表
- 北師大版七年級(jí)數(shù)學(xué)上冊(cè)教案(全冊(cè)完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 2023高中物理步步高大一輪 第五章 第1講 萬有引力定律及應(yīng)用
- 青少年軟件編程(Scratch)練習(xí)題及答案
- 浙江省公務(wù)員考試面試真題答案及解析精選
- 系統(tǒng)性紅斑狼瘡-第九版內(nèi)科學(xué)
- 全統(tǒng)定額工程量計(jì)算規(guī)則1994
評(píng)論
0/150
提交評(píng)論