江西省九江市九江第一中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁(yè)
江西省九江市九江第一中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁(yè)
江西省九江市九江第一中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁(yè)
江西省九江市九江第一中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁(yè)
江西省九江市九江第一中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省九江市九江第一中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知角的終邊經(jīng)過(guò)點(diǎn),則A. B.C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-34.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm35.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.6.已知集合,則()A. B. C. D.7.函數(shù)的圖象大致為A. B. C. D.8.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.9.設(shè)是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,,則()A. B.C. D.10.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-211.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.12.已知為圓:上任意一點(diǎn),,若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡方程為()A. B.C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.14.函數(shù)的圖象在處的切線方程為__________.15.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,,則球的表面積為__________.16.若函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍有___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知三棱錐中側(cè)面與底面都是邊長(zhǎng)為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.18.(12分)已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,且.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點(diǎn),與圓相交于、兩點(diǎn),求的取值范圍.19.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.20.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說(shuō)明理由.21.(12分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對(duì),恒有成立,求實(shí)數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】因?yàn)榻堑慕K邊經(jīng)過(guò)點(diǎn),所以,則,即.故選D.2、D【解析】

結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.3、D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問(wèn)題,即把y+1x-24、B【解析】試題分析:該幾何體上面是長(zhǎng)方體,下面是四棱柱;長(zhǎng)方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點(diǎn):三視圖和幾何體的體積.5、C【解析】

取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計(jì)算知錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對(duì)于不等式性質(zhì)的靈活運(yùn)用.6、C【解析】

解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點(diǎn)睛】本題考查了解不等式與交集的運(yùn)算問(wèn)題,是基礎(chǔ)題.7、D【解析】

由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.8、D【解析】

利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.9、C【解析】

根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.10、B【解析】

根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.11、A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.12、B【解析】

如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計(jì)算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點(diǎn)睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

通過(guò)雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.14、【解析】

利用導(dǎo)數(shù)的幾何意義,對(duì)求導(dǎo)后在計(jì)算在處導(dǎo)函數(shù)的值,再利用點(diǎn)斜式列出方程化簡(jiǎn)即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點(diǎn)處的切線方程問(wèn)題,需要注意求導(dǎo)法則與計(jì)算,屬于基礎(chǔ)題.15、【解析】

如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,計(jì)算得到,得到答案.【詳解】如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長(zhǎng)方體是解題的關(guān)鍵.16、或【解析】

函數(shù)的零點(diǎn)方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點(diǎn)方程在區(qū)間的根,所以,解得:,,因?yàn)楹瘮?shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),所以或,即或.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,在求含絕對(duì)值方程時(shí),要注意對(duì)絕對(duì)值內(nèi)數(shù)的正負(fù)進(jìn)行討論.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2)【解析】

(1)設(shè)為中點(diǎn),連結(jié),先證明,可證得,假設(shè)不為線段的中點(diǎn),可得平面,這與矛盾,即得證;(2)以為原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設(shè)為中點(diǎn),連結(jié).∴,,又平面,平面,∴.又分別為中點(diǎn),,又,∴.假設(shè)不為線段的中點(diǎn),則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點(diǎn).(2)以為原點(diǎn),由條件面面,∴,以分別為軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何與空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進(jìn)而可得出,則橢圓的標(biāo)準(zhǔn)方程可求;(Ⅱ)設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,利用韋達(dá)定理與弦長(zhǎng)公式求出,利用幾何法求得直線截圓所得弦長(zhǎng),可得出關(guān)于的函數(shù)表達(dá)式,利用不等式的性質(zhì)可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)點(diǎn)、,聯(lián)立消去,得,,則,,設(shè)圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中弦長(zhǎng)之積的取值范圍的求解,涉及韋達(dá)定理與弦長(zhǎng)公式的應(yīng)用,考查計(jì)算能力,屬于中等題.19、(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解析】

(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時(shí),,單調(diào)遞增;時(shí),令得,時(shí),,遞減,時(shí),,遞增,綜上所述,時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時(shí),,,從而只需時(shí),恒成立,即,令,,在上遞減,在上遞增,∴,從而.時(shí),,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個(gè)數(shù)與不等式恒成立問(wèn)題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問(wèn)題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過(guò)導(dǎo)數(shù)求解.20、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點(diǎn),再根據(jù)面可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量,用表示面的一個(gè)法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點(diǎn).又面,且是面與面的交線,是的中點(diǎn).(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如圖),則各點(diǎn)坐標(biāo)為.設(shè)存在滿足要求,且,則由得:,面的一個(gè)法向量為,面的一個(gè)法向量為,由,得,解得,故存在,使二面角為直角,此時(shí).21、(1);(2)【解析】

(1)將有兩個(gè)零點(diǎn)轉(zhuǎn)化為方程有兩個(gè)相異實(shí)根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問(wèn)題轉(zhuǎn)化為對(duì)一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個(gè)零點(diǎn)關(guān)于的方程有兩個(gè)相異實(shí)根由,知有兩個(gè)零點(diǎn)有兩個(gè)相異實(shí)根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為;(2)當(dāng)時(shí),,原命題等價(jià)于對(duì)一切恒成立對(duì)一切恒成立.令令,,則在上單增又,,使即①當(dāng)時(shí),,當(dāng)時(shí),,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問(wèn)題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.22、(1)(2)【解析】

(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論