版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省1號卷A10聯(lián)盟2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,則()A. B.C. D.2.已知,則下列關(guān)系正確的是()A. B. C. D.3.設(shè)過點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,為坐標(biāo)原點(diǎn),若,且,則點(diǎn)的軌跡方程是()A. B.C. D.4.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50505.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.126.已知集合,,則等于()A. B. C. D.7.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.9608.已知集合,集合,則().A. B.C. D.9.已知函數(shù),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.10.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動點(diǎn),為軸上的動點(diǎn),則的最大值是()A. B.9 C.7 D.11.命題“”的否定是()A. B.C. D.12.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列滿足遞推公式,且,則___________.14.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.15.已知函數(shù),若函數(shù)有6個零點(diǎn),則實數(shù)的取值范圍是_________.16.的展開式中,的系數(shù)為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.18.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.19.(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點(diǎn),求最大時,直線l的直角坐標(biāo)方程.20.(12分)已知數(shù)列,其前項和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.21.(12分)已知,,,.(1)求的值;(2)求的值.22.(10分)已知點(diǎn),若點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;(Ⅱ)過點(diǎn)的直線與(Ⅰ)中曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求△面積的最大值及此時直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個數(shù)的大小關(guān)系.【詳解】對數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來比較,考查推理能力,屬于基礎(chǔ)題.2、A【解析】
首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點(diǎn)睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.3、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算表示出,從而可利用表示出;由坐標(biāo)運(yùn)算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【點(diǎn)睛】本題考查動點(diǎn)軌跡方程的求解,涉及到平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算;關(guān)鍵是利用動點(diǎn)坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算可整理得軌跡方程.4、C【解析】
因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計算公式的應(yīng)用,屬于中檔題.6、B【解析】
解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.7、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,在分類時,要注意不重不漏的原則,本題是一道中檔題.8、A【解析】
算出集合A、B及,再求補(bǔ)集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點(diǎn)睛】本題考查集合的交集、補(bǔ)集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.9、C【解析】
將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,因為函數(shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.10、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.11、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.12、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題14、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.15、【解析】
由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實數(shù)a的取值范圍.【詳解】當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實數(shù)滿足,當(dāng)時,由對勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當(dāng)時,,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個零點(diǎn),即方程有6個根,也就是有6個根,即與有6個不同交點(diǎn),注意到函數(shù)關(guān)于直線對稱,則函數(shù)關(guān)于直線對稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實數(shù)的取值范圍是.故答案為.【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學(xué)思想,等價轉(zhuǎn)化的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16、16【解析】
要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16【點(diǎn)睛】此題考查二項式的系數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當(dāng)時,單調(diào)遞增,且,當(dāng)時,單調(diào)遞增,且,所以,由,知不等式成立.【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)見證明;(2)【解析】
(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得,取,得,,同理可求得平面的法向量為,設(shè)二面角的平面角為,則,所以二面角的余弦值為.【點(diǎn)睛】本題考查了兩平面垂直的判定,考查了利用空間向量的方法求二面角,考查了棱錐的體積的計算,考查了空間想象能力及計算能力,屬于中檔題.19、(1);(2).【解析】
(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點(diǎn),最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標(biāo)方程為,即.(2)因為直線(t為參數(shù))表示的是過點(diǎn)的直線,曲線C的普通方程為,所以當(dāng)最大時,直線l經(jīng)過圓心.直線l的斜率為,方程為,所以直線l的直角坐標(biāo)方程為.【點(diǎn)睛】本題考查參數(shù)方程與普通方程互化、直角坐標(biāo)方程與極坐標(biāo)方程互化、直線與曲線的位置關(guān)系,考查化歸和轉(zhuǎn)化思想,屬于中檔題.20、(1)證明見解析;(2).【解析】
(1)用數(shù)學(xué)歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結(jié)果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,假設(shè)成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設(shè),,∴是一個整數(shù),∴,從而又當(dāng)時,有,綜上,的最小值為.【點(diǎn)睛】本題主要考查由遞推關(guān)系得通項公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,屬于難題.21、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點(diǎn)睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運(yùn)算能力.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023凈身出戶離婚協(xié)議書
- 償還借款協(xié)議書范本
- 額部腫塊病因介紹
- 公司轉(zhuǎn)讓個人股份協(xié)議
- 中考政治第一部分知識闖關(guān)能力提升第二課時調(diào)節(jié)情緒學(xué)習(xí)壓力明辨是非復(fù)習(xí)課獲
- 2015中國在線音樂行業(yè)研究報告
- (2024)赤泥綜合利用生產(chǎn)建設(shè)項目可行性研究報告(一)
- 2023年辦公照明項目籌資方案
- 【電信終端產(chǎn)業(yè)協(xié)會】2024年終端智能化分級研究報告
- 國際物流題庫(含參考答案)
- 臨時用電配電箱日常檢查表
- 錄井技術(shù)服務(wù)方案與技術(shù)措施
- 2022年二年級上冊語文復(fù)習(xí)計劃
- 小學(xué)語文人教課標(biāo)版(部編)三年級下冊習(xí)作:我的植物朋友 1
- 西師大版六年級數(shù)學(xué)上冊《比和按比例分配的整理與復(fù)習(xí)》課件
- 房屋租賃合同終止協(xié)議書格式(3篇)
- PPT成功的秘訣——勤奮
- 建設(shè)工程監(jiān)理概論(PPT)
- 土地整治業(yè)務(wù)培訓(xùn)
- 澳大利亞教育質(zhì)量保障框架ppt課件
- 熱力學(xué)第四章熱力學(xué)第二定律(me)(1)
評論
0/150
提交評論