版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西賀州市平桂區(qū)平桂高級(jí)中學(xué)2023-2024學(xué)年高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為()A. B. C.1 D.2.復(fù)數(shù)()A. B. C.0 D.3.已知橢圓的中心為原點(diǎn),為的左焦點(diǎn),為上一點(diǎn),滿足且,則橢圓的方程為()A. B. C. D.4.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.5.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.6.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱7.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln28.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.9.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.10.函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-211.下列不等式成立的是()A. B. C. D.12.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖在三棱柱中,,,,點(diǎn)為線段上一動(dòng)點(diǎn),則的最小值為________.14.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.15.已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí),的內(nèi)心的軌跡方程為__________.16.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長(zhǎng)介于與之間的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過的直線與曲線相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.19.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.20.(12分)求函數(shù)的最大值.21.(12分)在四棱錐的底面中,,,平面,是的中點(diǎn),且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點(diǎn),使得,若存在指出點(diǎn)的位置,若不存在請(qǐng)說明理由.22.(10分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,,解得,因此,直線的斜率為.故選:B.【點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.2、C【解析】略3、B【解析】由題意可得c=,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點(diǎn)睛:橢圓的定義:到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡,當(dāng)和大于兩定點(diǎn)間的距離時(shí),軌跡是橢圓,當(dāng)和等于兩定點(diǎn)間的距離時(shí),軌跡是線段(兩定點(diǎn)間的連線段),當(dāng)和小于兩定點(diǎn)間的距離時(shí),軌跡不存在.4、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.5、A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.6、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.7、B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.【點(diǎn)睛】本題考查了非線性相關(guān)的二次擬合問題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.8、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.9、D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立..令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.【點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時(shí)求解參數(shù)問題,考查學(xué)生的分析問題的能力和計(jì)算求解的能力,難度較難.10、A【解析】
求出,對(duì)分類討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個(gè)零點(diǎn),.故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.11、D【解析】
根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.12、D【解析】
由試驗(yàn)結(jié)果知對(duì)0~1之間的均勻隨機(jī)數(shù),滿足,面積為1,再計(jì)算構(gòu)成鈍角三角形三邊的數(shù)對(duì),滿足條件的面積,由幾何概型概率計(jì)算公式,得出所取的點(diǎn)在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計(jì)的值.【詳解】解:根據(jù)題意知,名同學(xué)取對(duì)都小于的正實(shí)數(shù)對(duì),即,對(duì)應(yīng)區(qū)域?yàn)檫呴L(zhǎng)為的正方形,其面積為,若兩個(gè)正實(shí)數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點(diǎn)睛】本題考查線性規(guī)劃可行域問題及隨機(jī)模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個(gè)封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時(shí),關(guān)鍵是弄清某事件對(duì)應(yīng)的面積,必要時(shí)可根據(jù)題意構(gòu)造兩個(gè)變量,把變量看成點(diǎn)的坐標(biāo),找到試驗(yàn)全部結(jié)果構(gòu)成的平面圖形,以便求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把繞著進(jìn)行旋轉(zhuǎn),當(dāng)四點(diǎn)共面時(shí),運(yùn)用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個(gè)平面,展開圖如圖所示,若,,三點(diǎn)共線時(shí)最小為,為直角三角形,故答案為:【點(diǎn)睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點(diǎn)之間線段最短,解直角三角形進(jìn)行求解,考查了空間想象能力和計(jì)算能力,屬于中檔題.14、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)?,所以是異面直線與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.15、【解析】
考查更為一般的問題:設(shè)P為橢圓C:上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長(zhǎng)軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點(diǎn)I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.16、【解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長(zhǎng)介于與之間的弧長(zhǎng)為?2πR,則AB弦的長(zhǎng)度大于等于半徑長(zhǎng)度的概率P==;故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1):,:;(2)【解析】
(1)根據(jù)點(diǎn)斜式寫出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【點(diǎn)睛】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.18、(1),(2)最大值,最小值【解析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標(biāo)方程,展開有,再根據(jù)求解.(2)因?yàn)榍€C是一個(gè)半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點(diǎn)由圖可知.【詳解】(1)因?yàn)榍€的參數(shù)方程為所以兩式平方相加得:因?yàn)橹本€的極坐標(biāo)方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點(diǎn)到直線的最小值為:則點(diǎn)M(2,0)到直線的距離為最大值:【點(diǎn)睛】本題主要考查參數(shù)方程,普通方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2)或.【解析】
(1)求出,對(duì)分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個(gè)實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時(shí),恒成立,當(dāng)時(shí),,綜上,當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2),令,原方程只有一個(gè)解,只需只有一個(gè)解,即求只有一個(gè)零點(diǎn)時(shí),的取值范圍,由(1)得當(dāng)時(shí),在單調(diào)遞增,且,函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)時(shí),由(1)得在出取得極小值,也是最小值,當(dāng)時(shí),,此時(shí)函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)且遞增區(qū)間時(shí),遞減區(qū)間時(shí);,當(dāng),有兩個(gè)零點(diǎn),即原方程有兩個(gè)解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類討論和等價(jià)轉(zhuǎn)化思想,屬于中檔題.20、【解析】
試題分析:由柯西不等式得試題解析:因?yàn)?,所以.等?hào)當(dāng)且僅當(dāng),即時(shí)成立.所以的最大值為.考點(diǎn):柯西不等式求最值21、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點(diǎn)為線段的中點(diǎn).【解析】
(Ⅰ)連結(jié),,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標(biāo)系,平面法向量為,平面的法向量,計(jì)算夾角得到答案.(Ⅲ)設(shè),計(jì)算,,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇省安全員《A證》考試題庫
- 靈芝種植產(chǎn)業(yè)基地項(xiàng)目可行性研究報(bào)告-靈芝市場(chǎng)需求持續(xù)擴(kuò)大
- 廣州中醫(yī)藥大學(xué)《試劑生產(chǎn)工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025青海省建筑安全員-B證考試題庫及答案
- 廣州醫(yī)科大學(xué)《哲學(xué)通論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025遼寧建筑安全員考試題庫
- 2025年江蘇建筑安全員考試題庫及答案
- 2025年-江蘇省安全員《B證》考試題庫及答案
- 《FOOD中國(guó)飲食文化》課件
- 【語文課件】冀中的地道戰(zhàn)課件
- 一年級(jí)下學(xué)期道德與法治教學(xué)工作總結(jié)
- 財(cái)稅公司合同范本
- 臨時(shí)用電電纜線租賃合同
- DB34T4829-2024公路工程泡沫輕質(zhì)土設(shè)計(jì)與施工技術(shù)規(guī)程
- 抗腫瘤藥物臨床管理辦法培訓(xùn)
- 福建省福州市2023-2024學(xué)年高一上學(xué)期1月期末地理試題(解析版)
- 各部門月度安全環(huán)??荚u(píng)細(xì)則
- 預(yù)防性侵害安全教育
- 科大訊飛招聘在線測(cè)評(píng)題
- 醫(yī)學(xué)文獻(xiàn)檢索復(fù)習(xí)試題和答案解析(四)
- 科學(xué)備考講解模板
評(píng)論
0/150
提交評(píng)論