2023-2024學(xué)年江蘇省蘇州市第一中學(xué)高三考前熱身數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年江蘇省蘇州市第一中學(xué)高三考前熱身數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年江蘇省蘇州市第一中學(xué)高三考前熱身數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年江蘇省蘇州市第一中學(xué)高三考前熱身數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年江蘇省蘇州市第一中學(xué)高三考前熱身數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省蘇州市第一中學(xué)高三考前熱身數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對(duì)于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件3.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.4.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3205.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個(gè)合唱隊(duì)每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個(gè)位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.126.某公園新購進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.7.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.8.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.9.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.10.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.3211.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③12.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.14.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),己知A(3,1),B(-1,3),若點(diǎn)C滿足,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為15.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值為__________.16.直線xsinα+y+2=0的傾斜角的取值范圍是________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問小明上學(xué)的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?18.(12分)聯(lián)合國糧農(nóng)組織對(duì)某地區(qū)最近10年的糧食需求量部分統(tǒng)計(jì)數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關(guān)關(guān)系,我們以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo),請(qǐng)完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計(jì)劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.19.(12分)的內(nèi)角,,的對(duì)邊分別是,,,已知.(1)求角;(2)若,,求的面積.20.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點(diǎn)P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請(qǐng)說明理由.21.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.22.(10分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由已知先求出,即,進(jìn)一步可得,再將所求問題轉(zhuǎn)化為對(duì)于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時(shí),則,,所以,,顯然當(dāng)時(shí),,故,,若對(duì)于任意正整數(shù)不等式恒成立,即對(duì)于任意正整數(shù)恒成立,即對(duì)于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識(shí),是一道較為綜合的數(shù)列題.2、C【解析】

先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.3、C【解析】

由程序語言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題4、C【解析】

首先把看作為一個(gè)整體,進(jìn)而利用二項(xiàng)展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項(xiàng)展開式的通項(xiàng)公式可得的第項(xiàng)為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點(diǎn)睛】本題考查二項(xiàng)展開式指定項(xiàng)的系數(shù),掌握二項(xiàng)展開式的通項(xiàng)是解題的關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】

中位數(shù)指一串?dāng)?shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個(gè)數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識(shí),是一道容易題.6、B【解析】

間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問題、分步乘法計(jì)數(shù)原理,不相鄰問題插空法是解題的關(guān)鍵,屬于中檔題.7、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.8、C【解析】

由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【點(diǎn)睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.9、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.10、A【解析】

根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.11、D【解析】

對(duì)于①,利用拋物線的定義,利用可判斷;對(duì)于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對(duì)于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以過點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.12、A【解析】

根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)?,所以由程序框圖知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.14、【解析】

根據(jù)向量共線定理得A,B,C三點(diǎn)共線,再根據(jù)點(diǎn)斜式得結(jié)果【詳解】因?yàn)?且α+β=1,所以A,B,C三點(diǎn)共線,因此點(diǎn)C的軌跡為直線AB:【點(diǎn)睛】本題考查向量共線定理以及直線點(diǎn)斜式方程,考查基本分析求解能力,屬中檔題.15、【解析】

由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對(duì)應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對(duì)任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.16、【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)6種;(2);(3).【解析】

(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過處,共有4條路線,即,,,,分別對(duì)4條路線進(jìn)行分析計(jì)算概率;(3)分別對(duì)小明上學(xué)的6條路線進(jìn)行分析求均值,均值越大的應(yīng)避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條.(2)小明途中恰好經(jīng)過處,共有4條路線:①當(dāng)走時(shí),全程不等紅綠燈的概率;②當(dāng)走時(shí),全程不等紅綠燈的概率;③當(dāng)走時(shí),全程不等紅綠燈的概率;④當(dāng)走時(shí),全程不等紅綠燈的概率.所以途中恰好經(jīng)過處,且全程不等信號(hào)燈的概率.(3)設(shè)以下第條的路線等信號(hào)燈的次數(shù)為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學(xué)的最佳路線為;應(yīng)盡量避開.【點(diǎn)睛】本題考查概率在實(shí)際生活中的綜合應(yīng)用問題,考查學(xué)生邏輯推理與運(yùn)算能力,是一道有一定難度的題.18、(1)見解析;(2)能夠滿足.【解析】

(1)根據(jù)表中數(shù)據(jù),結(jié)合以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo)的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預(yù)測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對(duì)數(shù)據(jù)處理表格如下:年份—2014024需求量—25701929(2)由題意可知,變量與之間具有線性相關(guān)關(guān)系,由(1)中表格可得,,,,.由上述計(jì)算結(jié)果可知,所求回歸直線方程為,利用回歸直線方程,可預(yù)測2020年的糧食需求量為:(萬噸),因?yàn)?,故能夠滿足該地區(qū)的糧食需求.【點(diǎn)睛】本題考查了線性回歸直線的求法及預(yù)測應(yīng)用,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因?yàn)?,所?(2)由,得.由正弦定理,得,因?yàn)?,所?又因,所以.所以的面積.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.20、(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,且,據(jù)此有,則平面.(Ⅱ)由題意可得平面的法向量,結(jié)合(Ⅰ)的結(jié)論可得,即平面與平面所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論