![四川省遂寧市射洪中學2023-2024學年中考數(shù)學押題試卷含解析_第1頁](http://file4.renrendoc.com/view12/M02/23/19/wKhkGWY2IC6Acg1IAAGv6Nmp77Q854.jpg)
![四川省遂寧市射洪中學2023-2024學年中考數(shù)學押題試卷含解析_第2頁](http://file4.renrendoc.com/view12/M02/23/19/wKhkGWY2IC6Acg1IAAGv6Nmp77Q8542.jpg)
![四川省遂寧市射洪中學2023-2024學年中考數(shù)學押題試卷含解析_第3頁](http://file4.renrendoc.com/view12/M02/23/19/wKhkGWY2IC6Acg1IAAGv6Nmp77Q8543.jpg)
![四川省遂寧市射洪中學2023-2024學年中考數(shù)學押題試卷含解析_第4頁](http://file4.renrendoc.com/view12/M02/23/19/wKhkGWY2IC6Acg1IAAGv6Nmp77Q8544.jpg)
![四川省遂寧市射洪中學2023-2024學年中考數(shù)學押題試卷含解析_第5頁](http://file4.renrendoc.com/view12/M02/23/19/wKhkGWY2IC6Acg1IAAGv6Nmp77Q8545.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省遂寧市射洪中學2023-2024學年中考數(shù)學押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值22.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.143.計算的結果為()A.1 B.x C. D.4.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.5.如果t>0,那么a+t與a的大小關系是()A.a(chǎn)+t>aB.a(chǎn)+t<aC.a(chǎn)+t≥aD.不能確定6.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根7.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km8.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.489.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣1010.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應的點是()A.點A B.點B C.點C D.點D11.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.12.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,點E是的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.14.已知二次函數(shù)中,函數(shù)y與x的部分對應值如下:...-10123......105212...則當時,x的取值范圍是_________.15.4的平方根是.16.計算:()0﹣=_____.17.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內(nèi),使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應的度數(shù)是____.18.若關于x的方程有兩個相等的實數(shù)根,則m的值是_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關系,如圖是y與x的函數(shù)關系圖象.(1)求y與x的函數(shù)關系式;(2)直接寫出自變量x的取值范圍.20.(6分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是_____度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數(shù)會落在_____等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?21.(6分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?22.(8分)解不等式組:并寫出它的所有整數(shù)解.23.(8分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.24.(10分)在中,,是的角平分線,交于點.(1)求的長;(2)求的長.25.(10分)如圖:求作一點P,使,并且使點P到的兩邊的距離相等.26.(12分)某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?27.(12分)如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求函數(shù)y=kx+b和y=的表達式;(2)已知點C(0,8),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.2、A【解析】
利用平行四邊形的性質即可解決問題.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【點睛】題考查了平行四邊形的性質和三角形周長的計算,平行四邊形的性質有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.3、A【解析】
根據(jù)同分母分式的加減運算法則計算可得.【詳解】原式===1,故選:A.【點睛】本題主要考查分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.4、B【解析】
觀察圖形,利用中心對稱圖形的性質解答即可.【詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【點睛】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關鍵.5、A【解析】試題分析:根據(jù)不等式的基本性質即可得到結果.t>0,∴a+t>a,故選A.考點:本題考查的是不等式的基本性質點評:解答本題的關鍵是熟練掌握不等式的基本性質1:不等式兩邊同時加或減去同一個整式,不等號方向不變.6、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數(shù)根,故選B7、B【解析】
正負數(shù)的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數(shù)在生活中的應用.注意用正負數(shù)表示的量必須是具有相反意義的量.8、D【解析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質、全等三角形的判定和性質、角平分線的性質定理、勾股定理、二元二次方程組等知識,解題的關鍵是學會添加常用輔助線,學會利用參數(shù),構建方程解決問題,屬于中考壓軸題.9、C【解析】
本題根據(jù)科學記數(shù)法進行計算.【詳解】因為科學記數(shù)法的標準形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學記數(shù)法,熟練掌握科學記數(shù)法是本題解題的關鍵.10、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最小.故選B.11、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質,含30度直角三角形的性質,以及弧長公式,熟練掌握切線的性質是解答本題的關鍵.12、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉的基本性質,解決此類問題的關鍵是掌握旋轉的基本性質,特別是線段之間的關系.題目整體較為簡單,適合隨堂訓練.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
首先根據(jù)切線的性質及圓周角定理得CE的長以及圓周角度數(shù),進而利用銳角三角函數(shù)關系得出DE,AD的長,利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點E是弧BF的中點,∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點睛】此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據(jù)已知得出△FOE和△AEF面積相等是解題關鍵.14、0<x<4【解析】
根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質,利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學們應熟練掌握.15、±1.【解析】試題分析:∵,∴4的平方根是±1.故答案為±1.考點:平方根.16、-1【解析】
本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【詳解】由分析可得:()0﹣=1-2=﹣1.【點睛】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關鍵.17、60.【解析】
首先設半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【詳解】設半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應的量角器上的刻度數(shù)是60°,故答案為:60.【點睛】本題考查了切線的性質、全等三角形的判定與性質以及垂直平分線的性質,解題的關鍵是掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.18、m=-【解析】
根據(jù)題意可以得到△=0,從而可以求得m的值.【詳解】∵關于x的方程有兩個相等的實數(shù)根,∴△=,解得:.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=-2x+31,(2)20≤x≤1【解析】試題分析:(1)根據(jù)函數(shù)圖象經(jīng)過點(20,300)和點(30,280),利用待定系數(shù)法即可求出y與x的函數(shù)關系式;
(2)根據(jù)試銷期間銷售單價不低于成本單價,也不高于每千克1元,結合草莓的成本價即可得出x的取值范圍.試題解析:(1)設y與x的函數(shù)關系式為y=kx+b,根據(jù)題意,得:解得:∴y與x的函數(shù)解析式為y=-2x+31,(2)∵試銷期間銷售單價不低于成本單價,也不高于每千克1元,且草莓的成本為每千克20元,
∴自變量x的取值范圍是20≤x≤1.20、(1)117;(2)答案見圖;(3)B;(4)30.【解析】
(1)先根據(jù)B等級人數(shù)及其百分比求得總人數(shù),總人數(shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總人數(shù)乘以樣本中A等級人數(shù)所占比例可得.【詳解】(1)∵總人數(shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應的扇形的圓心角是360°×1340故答案為:117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學生的足球運球測試成績的中位數(shù)會落在B等級,故答案為:B.(4)估計足球運球測試成績達到A級的學生有300×440【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.21、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】
(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當x=m,有最大面積的花圃.【點睛】二次函數(shù)在實際生活中的應用是本題的考點,根據(jù)題目給出的條件,找出合適的等量關系,列出方程是解題的關鍵.22、原不等式組的解集為,它的所有整數(shù)解為0,1.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后寫出它的所有整數(shù)解即可.【詳解】解:,解不等式①,得,解不等式②,得x<2,∴原不等式組的解集為,它的所有整數(shù)解為0,1.【點睛】本題主要考查了一元一次不等式組解集的求法.解一元一次不等式組的簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).23、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】
(1)解方程求出點A的坐標,根據(jù)勾股定理計算即可;(1)設新拋物線對應的函數(shù)表達式為:y=x1+bx+1,根據(jù)二次函數(shù)的性質求出點C′的坐標,根據(jù)題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側,∴A(﹣1,0),∵直線y=x+m經(jīng)過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標為(0,1),∴AD==1;(1)設新拋物線對應的函數(shù)表達式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標為(﹣,1﹣),∵CC′平行于直線AD,且經(jīng)過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應的函數(shù)表達式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的性質、拋物線與x軸的交點的求法是解題的關鍵.24、(1)10;(2)的長為【解析】
(1)利用勾股定理求解;(2)過點作于,利用角平分線的性質得到CD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年臨街店鋪門面租賃合同范文(2篇)
- 2025年二手房轉讓協(xié)議參考樣本(三篇)
- 2025年倉儲設施的租賃合同(2篇)
- 2025年企業(yè)公司員工保密合同(2篇)
- 2025年度安全保衛(wèi)人員招聘與培訓合同
- 工廠搬遷運輸服務協(xié)議
- 廢品回收運輸合同
- 展覽館裝修居間協(xié)議
- 城市公交燃油供應協(xié)議
- 機械設備搬遷居間協(xié)議
- 證券公司信用風險和操作風險管理理論和實踐中金公司
- 一級建造師繼續(xù)教育最全題庫及答案(新)
- 2022年高考湖南卷生物試題(含答案解析)
- GB/T 20909-2007鋼門窗
- GB/T 17854-1999埋弧焊用不銹鋼焊絲和焊劑
- GB/T 15593-2020輸血(液)器具用聚氯乙烯塑料
- 直線加速器專項施工方案
- 儲能設備項目采購供應質量管理方案
- 2022年全國卷高考語文答題卡格式
- 復旦大學簡介 (課堂PPT)
- CKD馬達使用說明
評論
0/150
提交評論