版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年四川省樂(lè)山市重點(diǎn)名校中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,矩形是由三個(gè)全等矩形拼成的,與,,,,分別交于點(diǎn),設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.122.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.13.|﹣3|=()A. B.﹣ C.3 D.﹣34.如圖,AB是定長(zhǎng)線(xiàn)段,圓心O是AB的中點(diǎn),AE、BF為切線(xiàn),E、F為切點(diǎn),滿(mǎn)足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線(xiàn)交AE、BF的延長(zhǎng)線(xiàn)于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿(mǎn)足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)5.如圖是由幾個(gè)相同的小正方體搭成的一個(gè)幾何體,它的俯視圖是()A.B.C.D.6.某小組7名同學(xué)在一周內(nèi)參加家務(wù)勞動(dòng)的時(shí)間如下表所示,關(guān)于“勞動(dòng)時(shí)間”的這組數(shù)據(jù),以下說(shuō)法正確的是()勞動(dòng)時(shí)間(小時(shí))33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.57.如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)M,N分別是∠AOB兩邊上的點(diǎn),點(diǎn)P關(guān)于OA的對(duì)稱(chēng)點(diǎn)Q恰好落在線(xiàn)段MN上,點(diǎn)P關(guān)于OB的對(duì)稱(chēng)點(diǎn)R落在MN的延長(zhǎng)線(xiàn)上,若PM=2.5cm,PN=3cm,MN=4cm,則線(xiàn)段QR的長(zhǎng)為()A.4.5cm B.5.5cm C.6.5cm D.7cm8.一列動(dòng)車(chē)從A地開(kāi)往B地,一列普通列車(chē)從B地開(kāi)往A地,兩車(chē)同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為x(小時(shí)),兩車(chē)之間的距離為y(千米),如圖中的折線(xiàn)表示y與x之間的函數(shù)關(guān)系.下列敘述錯(cuò)誤的是()A.AB兩地相距1000千米B.兩車(chē)出發(fā)后3小時(shí)相遇C.動(dòng)車(chē)的速度為D.普通列車(chē)行駛t小時(shí)后,動(dòng)車(chē)到達(dá)終點(diǎn)B地,此時(shí)普通列車(chē)還需行駛千米到達(dá)A地9.下列計(jì)算正確的是()A.a(chǎn)6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=110.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線(xiàn)AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為()A.8 B.8 C.4 D.611.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=112.《九章算術(shù)》是中國(guó)古代數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問(wèn):牛、羊各直金幾何?譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩。問(wèn):每頭牛、每只羊各值金多少兩?”設(shè)每頭牛值金x兩,每只羊值金y兩,則列方程組錯(cuò)誤的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.二次函數(shù)中的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:…………則的解為_(kāi)_______.14.若反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個(gè)交點(diǎn)為(m,﹣4),則這個(gè)反比例函數(shù)的表達(dá)式為_(kāi)____.15.如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.16.已知反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn),那么的值是__.17.因式分解:3x3﹣12x=_____.18.用4塊完全相同的長(zhǎng)方形拼成正方形(如圖),用不同的方法,計(jì)算圖中陰影部分的面積,可得到1個(gè)關(guān)于的等式為_(kāi)_______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,∠BAO=90°,AB=8,動(dòng)點(diǎn)P在射線(xiàn)AO上,以PA為半徑的半圓P交射線(xiàn)AO于另一點(diǎn)C,CD∥BP交半圓P于另一點(diǎn)D,BE∥AO交射線(xiàn)PD于點(diǎn)E,EF⊥AO于點(diǎn)F,連接BD,設(shè)AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長(zhǎng).(3)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中.①當(dāng)AF=3CF時(shí),求出所有符合條件的m的值.②當(dāng)tan∠DBE=時(shí),直接寫(xiě)出△CDP與△BDP面積比.20.(6分)某商場(chǎng)計(jì)劃從廠家購(gòu)進(jìn)甲、乙、丙三種型號(hào)的電冰箱80臺(tái),其中甲種電冰箱的臺(tái)數(shù)是乙種電冰箱臺(tái)數(shù)的2倍.具體情況如下表:甲種乙種丙種進(jìn)價(jià)(元/臺(tái))120016002000售價(jià)(元/臺(tái))142018602280經(jīng)預(yù)算,商場(chǎng)最多支出132000元用于購(gòu)買(mǎi)這批電冰箱.(1)商場(chǎng)至少購(gòu)進(jìn)乙種電冰箱多少臺(tái)?(2)商場(chǎng)要求甲種電冰箱的臺(tái)數(shù)不超過(guò)丙種電冰箱的臺(tái)數(shù).為獲得最大利潤(rùn),應(yīng)分別購(gòu)進(jìn)甲、乙、丙電冰箱多少臺(tái)?獲得的最大利潤(rùn)是多少?21.(6分)如圖,直線(xiàn)y=﹣x+3分別與x軸、y交于點(diǎn)B、C;拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B、C,與x軸的另一個(gè)交點(diǎn)為點(diǎn)A(點(diǎn)A在點(diǎn)B的左側(cè)),對(duì)稱(chēng)軸為l1,頂點(diǎn)為D.(1)求拋物線(xiàn)y=x2+bx+c的解析式.(2)點(diǎn)M(1,m)為y軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線(xiàn)l2平行于x軸,與拋物線(xiàn)交于點(diǎn)P(x1,y1),Q(x2,y2),與直線(xiàn)BC交于點(diǎn)N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線(xiàn)段的中點(diǎn),求m的值.22.(8分)如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線(xiàn)MN上,過(guò)點(diǎn)C作CE⊥MN于點(diǎn)E,過(guò)點(diǎn)B作BF⊥MN于點(diǎn)F.(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線(xiàn)MN的上方時(shí),①直接寫(xiě)出線(xiàn)段AE,BF與CE的數(shù)量關(guān)系.②猜測(cè)線(xiàn)段AF,BF與CE的數(shù)量關(guān)系,不必寫(xiě)出證明過(guò)程.(2)將等腰直角△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線(xiàn)段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請(qǐng)寫(xiě)出你的猜想,并寫(xiě)出證明過(guò)程.(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫(xiě)出FG的長(zhǎng)度.23.(8分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長(zhǎng)線(xiàn)交于.(1)求證:是圓的切線(xiàn);(2)如圖2,延長(zhǎng),交圓于點(diǎn),點(diǎn)是劣弧的中點(diǎn),,,求的長(zhǎng).24.(10分)在⊙O中,弦AB與弦CD相交于點(diǎn)G,OA⊥CD于點(diǎn)E,過(guò)點(diǎn)B作⊙O的切線(xiàn)BF交CD的延長(zhǎng)線(xiàn)于點(diǎn)F.(I)如圖①,若∠F=50°,求∠BGF的大??;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大?。?5.(10分)已知P是的直徑BA延長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),∠P的另一邊交于點(diǎn)C、D,兩點(diǎn)位于AB的上方,=6,OP=m,,如圖所示.另一個(gè)半徑為6的經(jīng)過(guò)點(diǎn)C、D,圓心距.(1)當(dāng)m=6時(shí),求線(xiàn)段CD的長(zhǎng);(2)設(shè)圓心O1在直線(xiàn)上方,試用n的代數(shù)式表示m;(3)△POO1在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否能成為以O(shè)O1為腰的等腰三角形,如果能,試求出此時(shí)n的值;如果不能,請(qǐng)說(shuō)明理由.26.(12分)(1)如圖1,在矩形ABCD中,點(diǎn)O在邊AB上,∠AOC=∠BOD,求證:AO=OB;(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,OP與⊙O相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).27.(12分)解不等式組,并把解集在數(shù)軸上表示出來(lái).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個(gè)全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點(diǎn)睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.2、D【解析】
過(guò)A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計(jì)算即可.【詳解】∵S2=48,∴BC=4,過(guò)A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點(diǎn)睛】本題考查了勾股定理,正方形的性質(zhì),平行四邊形的判定和性質(zhì),正確的作出輔助線(xiàn)是解題的關(guān)鍵.3、C【解析】
根據(jù)絕對(duì)值的定義解答即可.【詳解】|-3|=3故選:C【點(diǎn)睛】本題考查的是絕對(duì)值,理解絕對(duì)值的定義是關(guān)鍵.4、C【解析】
延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線(xiàn),利用切線(xiàn)的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線(xiàn)合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線(xiàn)長(zhǎng)定理得到OD與OC分別為∠EOG與∠FOG的平分線(xiàn),得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線(xiàn),∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線(xiàn)長(zhǎng)定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿(mǎn)足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線(xiàn)長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).5、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個(gè)正方形,右上角是1個(gè)正方形,故選D.考點(diǎn):簡(jiǎn)單組合體的三視圖6、A【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個(gè)人,∴第4個(gè)人的勞動(dòng)時(shí)間為中位數(shù),所以中位數(shù)為4,故選A.【點(diǎn)睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會(huì)出錯(cuò).7、A【解析】試題分析:利用軸對(duì)稱(chēng)圖形的性質(zhì)得出PM=MQ,PN=NR,進(jìn)而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長(zhǎng)RN+NQ=3+2.5=3.5(cm).故選A.考點(diǎn):軸對(duì)稱(chēng)圖形的性質(zhì)8、C【解析】
可以用物理的思維來(lái)解決這道題.【詳解】未出發(fā)時(shí),x=0,y=1000,所以?xún)傻叵嗑?000千米,所以A選項(xiàng)正確;y=0時(shí)兩車(chē)相遇,x=3,所以B選項(xiàng)正確;設(shè)動(dòng)車(chē)速度為V1,普車(chē)速度為V2,則3(V1+V2)=1000,所以C選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.【點(diǎn)睛】理解轉(zhuǎn)折點(diǎn)的含義是解決這一類(lèi)題的關(guān)鍵.9、D【解析】解:A.a(chǎn)6÷a2=a4,故A錯(cuò)誤;B.(﹣2)﹣1=﹣,故B錯(cuò)誤;C.(﹣3x2)?2x3=﹣6x5,故C錯(cuò);D.(π﹣3)0=1,故D正確.故選D.10、D【解析】分析:連接OB,根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對(duì)等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計(jì)算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線(xiàn)等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點(diǎn)睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線(xiàn)合一的性質(zhì),直角三角形30°角所對(duì)的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線(xiàn)并求出∠BAC=30°是解題的關(guān)鍵.11、B【解析】試題分析:根據(jù)作圖方法可得點(diǎn)P在第二象限角平分線(xiàn)上,則P點(diǎn)橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.12、D【解析】
由5頭牛、2只羊,值金10兩可得:5x+2y=10,由2頭牛、5只羊,值金8兩可得2x+5y=8,則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,據(jù)此可得答案.【詳解】解:設(shè)每頭牛值金x兩,每只羊值金y兩,
由5頭牛、2只羊,值金10兩可得:5x+2y=10,
由2頭牛、5只羊,值金8兩可得2x+5y=8,
則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,
所以方程組錯(cuò)誤,
故選:D.【點(diǎn)睛】本題主要考查由實(shí)際問(wèn)題抽象出二元一次方程組,解題的關(guān)鍵是理解題意找到相等關(guān)系及等式的基本性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、或【解析】
由二次函數(shù)y=ax2+bx+c(a≠0)過(guò)點(diǎn)(-1,-2),(0,-2),可求得此拋物線(xiàn)的對(duì)稱(chēng)軸,又由此拋物線(xiàn)過(guò)點(diǎn)(1,0),即可求得此拋物線(xiàn)與x軸的另一個(gè)交點(diǎn).繼而求得答案.【詳解】解:∵二次函數(shù)y=ax2+bx+c(a≠0)過(guò)點(diǎn)(-1,-2),(0,-2),∴此拋物線(xiàn)的對(duì)稱(chēng)軸為:直線(xiàn)x=-,∵此拋物線(xiàn)過(guò)點(diǎn)(1,0),∴此拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為:(-2,0),∴ax2+bx+c=0的解為:x=-2或1.故答案為x=-2或1.【點(diǎn)睛】此題考查了拋物線(xiàn)與x軸的交點(diǎn)問(wèn)題.此題難度適中,注意掌握二次函數(shù)的對(duì)稱(chēng)性是解此題的關(guān)鍵.14、y=﹣.【解析】
把交點(diǎn)坐標(biāo)代入兩個(gè)解析式組成方程組,解方程組求得k,即可求得反比例函數(shù)的解析式.【詳解】解:∵反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個(gè)交點(diǎn)為(m,﹣4),∴,解得k=﹣5,∴反比例函數(shù)的表達(dá)式為y=﹣,故答案為y=﹣.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,根據(jù)圖象上點(diǎn)的坐標(biāo)特征得出方程組是解題的關(guān)鍵.15、4m【解析】
設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對(duì)應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因?yàn)閮扇讼嗑?.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵M(jìn)N∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.16、【解析】
將點(diǎn)的坐標(biāo)代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點(diǎn)睛】本題主要考查函數(shù)圖像上的點(diǎn)滿(mǎn)足其解析式,可以結(jié)合代入法進(jìn)行解答17、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式進(jìn)行分解即可.【詳解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案為3x(x+2)(x﹣2).【點(diǎn)睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對(duì)多項(xiàng)式進(jìn)行因式分解,一般來(lái)說(shuō),如果可以先提取公因式的要先提取公因式,再考慮運(yùn)用公式法分解.18、(a+b)2﹣(a﹣b)2=4ab【解析】
根據(jù)長(zhǎng)方形面積公式列①式,根據(jù)面積差列②式,得出結(jié)論.【詳解】S陰影=4S長(zhǎng)方形=4ab①,S陰影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案為(a+b)2﹣(a﹣b)2=4ab.【點(diǎn)睛】本題考查了完全平方公式幾何意義的理解,此題有機(jī)地把代數(shù)與幾何圖形聯(lián)系在一起,利用幾何圖形的面積公式直接得出或由其圖形的和或差得出.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)詳見(jiàn)解析;(2)的長(zhǎng)為1;(3)m的值為或;與面積比為或.【解析】
由知,再由知、,據(jù)此可得,證≌即可得;
易知四邊形ABEF是矩形,設(shè),可得,證≌得,在中,由,列方程求解可得答案;
分點(diǎn)C在AF的左側(cè)和右側(cè)兩種情況求解:左側(cè)時(shí)由知、、,在中,由可得關(guān)于m的方程,解之可得;右側(cè)時(shí),由知、、,利用勾股定理求解可得.作于點(diǎn)G,延長(zhǎng)GD交BE于點(diǎn)H,由≌知,據(jù)此可得,再分點(diǎn)D在矩形內(nèi)部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設(shè),則,,,,,≌,,≌,,在中,,即,解得:,的長(zhǎng)為1.如圖1,當(dāng)點(diǎn)C在AF的左側(cè)時(shí),,則,,,,在中,由可得,解得:負(fù)值舍去;如圖2,當(dāng)點(diǎn)C在AF的右側(cè)時(shí),,,,,,在中,由可得,解得:負(fù)值舍去;綜上,m的值為或;如圖3,過(guò)點(diǎn)D作于點(diǎn)G,延長(zhǎng)GD交BE于點(diǎn)H,≌,,又,且,,當(dāng)點(diǎn)D在矩形ABEF的內(nèi)部時(shí),由可設(shè)、,則,,則;如圖4,當(dāng)點(diǎn)D在矩形ABEF的外部時(shí),由可設(shè)、,則,,則,綜上,與面積比為或.【點(diǎn)睛】本題考查了四邊形的綜合問(wèn)題,解題的關(guān)鍵是掌握矩形的判定與性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理、三角形的面積等知識(shí)點(diǎn).20、(1)商場(chǎng)至少購(gòu)進(jìn)乙種電冰箱14臺(tái);(2)商場(chǎng)購(gòu)進(jìn)甲種電冰箱28臺(tái),購(gòu)進(jìn)乙種電冰箱14(臺(tái)),購(gòu)進(jìn)丙種電冰箱38臺(tái).【解析】
(1)設(shè)商場(chǎng)購(gòu)進(jìn)乙種電冰箱x臺(tái),則購(gòu)進(jìn)甲種電冰箱2x臺(tái),丙種電冰箱(80-3x)臺(tái),根據(jù)“商場(chǎng)最多支出132000元用于購(gòu)買(mǎi)這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤(rùn)=甲種冰箱利潤(rùn)+乙種冰箱利潤(rùn)+丙種冰箱利潤(rùn)”列出W關(guān)于x的函數(shù)解析式,結(jié)合x(chóng)的取值范圍,利用一次函數(shù)的性質(zhì)求解可得.【詳解】(1)設(shè)商場(chǎng)購(gòu)進(jìn)乙種電冰箱x臺(tái),則購(gòu)進(jìn)甲種電冰箱2x臺(tái),丙種電冰箱(80﹣3x)臺(tái).根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場(chǎng)至少購(gòu)進(jìn)乙種電冰箱14臺(tái);(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當(dāng)x=14時(shí),W取最大值,且W最大=﹣140×14+22400=20440,此時(shí),商場(chǎng)購(gòu)進(jìn)甲種電冰箱28臺(tái),購(gòu)進(jìn)乙種電冰箱14(臺(tái)),購(gòu)進(jìn)丙種電冰箱38臺(tái).【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用與一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊(yùn)含的不等關(guān)系和相等關(guān)系,并據(jù)此列出不等式與函數(shù)解析式.21、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】
(2)由直線(xiàn)y=﹣x+3分別與x軸、y交于點(diǎn)B、C求得點(diǎn)B、C的坐標(biāo),再代入y=x2+bx+c求得b、c的值,即可求得拋物線(xiàn)的解析式;(2)①先求得拋物線(xiàn)的頂點(diǎn)坐標(biāo)為D(2,﹣2),當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)D時(shí)求得m=﹣2;當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)C時(shí)求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當(dāng)直線(xiàn)l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間和當(dāng)直線(xiàn)l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點(diǎn)B(3,2),C(2,3)的坐標(biāo)代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線(xiàn)l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點(diǎn)為D(2,﹣2),當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)D時(shí),m=﹣2;當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)C時(shí),m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當(dāng)直線(xiàn)l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線(xiàn)段的中點(diǎn),則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點(diǎn)P、Q關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸l2對(duì)稱(chēng),又拋物線(xiàn)的對(duì)稱(chēng)軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點(diǎn)Q(x2,y2)的坐標(biāo)代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負(fù)值已舍去),∴m=()2﹣4×+3=如圖②,當(dāng)直線(xiàn)l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線(xiàn)段的中點(diǎn),則得PN=NQ.由上可得點(diǎn)P、Q關(guān)于直線(xiàn)l2對(duì)稱(chēng),∴點(diǎn)N在拋物線(xiàn)的對(duì)稱(chēng)軸l2:x=2,又點(diǎn)N在直線(xiàn)y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點(diǎn)睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、函數(shù)圖象的交點(diǎn)、線(xiàn)段的中點(diǎn)及分類(lèi)討論思想等知識(shí).在(2)中注意待定系數(shù)法的應(yīng)用;在(2)①注意利用數(shù)形結(jié)合思想;在(2)②注意分情況討論.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.22、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見(jiàn)解析;(3)FG=.【解析】
(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問(wèn)題;②利用①中結(jié)論即可解決問(wèn)題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問(wèn)題;【詳解】解:(1)證明:①如圖1,過(guò)點(diǎn)C做CD⊥BF,交FB的延長(zhǎng)線(xiàn)于點(diǎn)D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過(guò)點(diǎn)C作CG⊥BF,交BF延長(zhǎng)線(xiàn)于點(diǎn)G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過(guò)點(diǎn)C做CD⊥BF,交FB的于點(diǎn)D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點(diǎn)睛】本題考查幾何變換綜合題、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、平行線(xiàn)分線(xiàn)段成比例定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造全等三角形解決問(wèn)題.23、(1)詳見(jiàn)解析;(2)【解析】
(1)連接OA,利用切線(xiàn)的判定證明即可;
(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結(jié)OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直線(xiàn)AD是⊙O的切線(xiàn);
(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),
∵BE是直徑,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4
在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.【點(diǎn)睛】本題考查了切線(xiàn)的判定,勾股定理,正確的作出輔助線(xiàn)是解題的關(guān)鍵.24、(I)65°;(II)72°【解析】
(I)如圖①,連接OB,先利用切線(xiàn)的性質(zhì)得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內(nèi)角和可計(jì)算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計(jì)算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內(nèi)角和定理計(jì)算∠BGF的度數(shù);(II)如圖②,連接OB,BO的延長(zhǎng)線(xiàn)交AC于H,利用切線(xiàn)的性質(zhì)得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計(jì)算出∠OAH=54°,然后根據(jù)圓周角定理得到∠BDG的度數(shù).【詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線(xiàn),∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長(zhǎng)線(xiàn)交AC于H,∵BF為⊙O的切線(xiàn),∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人家庭溝通制度
- 數(shù)碼產(chǎn)品租賃合同(2篇)
- 2024年物業(yè)設(shè)施管理合同3篇
- 2025年平頂山貨運(yùn)駕駛員從業(yè)資格證考試題庫(kù)答案
- 2025年林芝貨運(yùn)從業(yè)資格證模擬考試下載
- 2025年懷化經(jīng)營(yíng)性道路客貨運(yùn)輸駕駛員從業(yè)資格考試
- 《催眠治療》課件
- 2024年教育設(shè)施融資租賃擔(dān)保合同示例2篇
- 2025年?yáng)|莞a2駕駛證貨運(yùn)從業(yè)資格證模擬考試
- 2024年版礦業(yè)開(kāi)發(fā)合同
- 中職英語(yǔ)新高教版基礎(chǔ)模塊1unit4school-life
- 2023年北京國(guó)家公務(wù)員行測(cè)考試真題及答案-行政執(zhí)法類(lèi)
- 2023輸電工程項(xiàng)目規(guī)范
- 初中信息技術(shù)課程課件《初識(shí)Python》
- 頻譜儀N9020A常用功能使用指南
- “雙減”背景下初中數(shù)學(xué)高效課堂實(shí)施策略研究 論文
- 天津高考英語(yǔ)詞匯3500
- 木本園林植物栽培技術(shù)
- 拋石護(hù)腳施工方案
- 英文技術(shù)寫(xiě)作-東南大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 模擬電子技術(shù)課程設(shè)計(jì)-BS208HAF調(diào)頻調(diào)幅兩波段收音機(jī)組裝與調(diào)試
評(píng)論
0/150
提交評(píng)論