河南盧氏縣重點名校2024屆中考數(shù)學(xué)最后一模試卷含解析_第1頁
河南盧氏縣重點名校2024屆中考數(shù)學(xué)最后一模試卷含解析_第2頁
河南盧氏縣重點名校2024屆中考數(shù)學(xué)最后一模試卷含解析_第3頁
河南盧氏縣重點名校2024屆中考數(shù)學(xué)最后一模試卷含解析_第4頁
河南盧氏縣重點名校2024屆中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南盧氏縣重點名校2024屆中考數(shù)學(xué)最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.82.方程x2﹣kx+1=0有兩個相等的實數(shù)根,則k的值是()A.2 B.﹣2 C.±2 D.03.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>24.為了配合“我讀書,我快樂”讀書節(jié)活動,某書店推出一種優(yōu)惠卡,每張卡售價20元,憑卡購書可享受8折優(yōu)惠,小慧同學(xué)到該書店購書,她先買優(yōu)惠卡再憑卡付款,結(jié)果節(jié)省了10元,若此次小慧同學(xué)不買卡直接購書,則她需付款:A.140元 B.150元 C.160元 D.200元5.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.66.統(tǒng)計學(xué)校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結(jié)果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、157.下列計算正確的是A. B. C. D.8.如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為()A. B.4 C. D.9.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.1010.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A,B,C.現(xiàn)有下面四個推斷:①拋物線開口向下;②當(dāng)x=-2時,y取最大值;③當(dāng)m<4時,關(guān)于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點A,C,當(dāng)kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).12.計算:______.13.已知一個多邊形的每一個內(nèi)角都等于108°,則這個多邊形的邊數(shù)是.14.如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時,那么BE的長為______.15.如圖,直線l⊥x軸于點P,且與反比例函數(shù)y1=(x>0)及y2=(x>0)的圖象分別交于點A,B,連接OA,OB,已知△OAB的面積為2,則k1-k2=________.16.計算:的結(jié)果是_____.三、解答題(共8題,共72分)17.(8分)解不等式組,并把解集在數(shù)軸上表示出來.18.(8分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數(shù)中選擇一個合適的數(shù)代入求值.19.(8分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大?。?0.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當(dāng)AC=5,BC=6時,求DF的長.22.(10分)深圳某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:“讀書節(jié)“活動計劃書書本類別科普類文學(xué)類進價(單位:元)1812備注(1)用不超過16800元購進兩類圖書共1000本;(2)科普類圖書不少于600本;…(1)已知科普類圖書的標(biāo)價是文學(xué)類圖書標(biāo)價的1.5倍,若顧客用540元購買的圖書,能單獨購買科普類圖書的數(shù)量恰好比單獨購買文學(xué)類圖書的數(shù)量少10本,請求出兩類圖書的標(biāo)價;(2)經(jīng)市場調(diào)査后發(fā)現(xiàn):他們高估了“讀書節(jié)”對圖書銷售的影響,便調(diào)整了銷售方案,科普類圖書每本標(biāo)價降低a(0<a<5)元銷售,文學(xué)類圖書價格不變,那么書店應(yīng)如何進貨才能獲得最大利潤?23.(12分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?4.如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應(yīng)再向前跑多少米?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【詳解】解:由題意得,當(dāng)點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.2、C【解析】

根據(jù)已知得出△=(﹣k)2﹣4×1×1=0,解關(guān)于k的方程即可得.【詳解】∵方程x2﹣kx+1=0有兩個相等的實數(shù)根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故選C.【點睛】本題考查了根的判別式的應(yīng)用,注意:一元二次方程ax2+bx+c=0(a、b、c為常數(shù),a≠0),當(dāng)b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;當(dāng)b2﹣4ac=0時,方程有兩個相等的實數(shù)根;當(dāng)b2﹣4ac<0時,方程無實數(shù)根.3、A【解析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.4、B【解析】試題分析:此題的關(guān)鍵描述:“先買優(yōu)惠卡再憑卡付款,結(jié)果節(jié)省了人民幣10元”,設(shè)李明同學(xué)此次購書的總價值是人民幣是x元,則有:20+0.8x=x﹣10解得:x=150,即:小慧同學(xué)不憑卡購書的書價為150元.故選B.考點:一元一次方程的應(yīng)用5、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.6、B【解析】

根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.?dāng)?shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).7、B【解析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關(guān)鍵是靈活應(yīng)用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進行計算.8、B【解析】

求出AD=BD,根據(jù)∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據(jù)ASA證△FBD≌△CAD,推出CD=DF即可.【詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【點睛】此題主要考查了全等三角形的判定,關(guān)鍵是找出能使三角形全等的條件.9、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【點睛】本題考查的知識點是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.10、B【解析】

結(jié)合函數(shù)圖象,利用二次函數(shù)的對稱性,恰當(dāng)使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當(dāng)x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標(biāo)應(yīng)該相等,但是圖中點A和點B的縱坐標(biāo)顯然不相等,所以②錯誤,從而排除掉A和D;

剩下的選項中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經(jīng)過點A,C,當(dāng)kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復(fù)雜的二次函數(shù)綜合選擇題.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】設(shè)出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應(yīng)用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.12、【解析】原式==.故答案為:.13、1【解析】試題分析:∵多邊形的每一個內(nèi)角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數(shù)是:360÷÷72=1.14、1.5或3【解析】根據(jù)矩形的性質(zhì),利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:如圖1,當(dāng)∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據(jù)相似三角形的判定與性質(zhì),可知△ABC∽△EFC,即,代入數(shù)據(jù)可得,解得BE=1.5;如圖2,當(dāng)∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.故答案為1.5或3.點睛:此題主要考查了翻折變換的性質(zhì),勾股定理,矩形的性質(zhì),正方形的判定與性質(zhì),利用勾股定理列方程求解是常用的方法,本題難點在于分類討論,做出圖形更形象直觀.15、2【解析】

試題分析:∵反比例函數(shù)(x>1)及(x>1)的圖象均在第一象限內(nèi),∴>1,>1.∵AP⊥x軸,∴S△OAP=,S△OBP=,∴S△OAB=S△OAP﹣S△OBP==2,解得:=2.故答案為2.16、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減三、解答題(共8題,共72分)17、﹣1≤x<1.【解析】

求不等式組的解集首先要分別解出兩個不等式的解集,然后利用口訣“同大取大,同小取小,大小小大中間找,大大小小找不到(”確定不等式組解集的公共部分.【詳解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式組的解集是﹣1≤x<1.不等式組的解集在數(shù)軸上表示如下:18、,1.【解析】

先算括號內(nèi)的減法,同時把除法變成乘法,再根據(jù)分式的乘法進行計算,最后代入求出即可.【詳解】原式=?=?=.∵由題意,x不能取1,﹣1,﹣2,∴x取2.當(dāng)x=2時,原式===1.【點睛】本題考查了分式的混合運算和求值,能正確根據(jù)分式的運算法則進行化簡是解答此題的關(guān)鍵.19、(1)證明見解析;(2)50°.【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點:(1)平行四邊形的性質(zhì);(2)全等三角形的判定與性質(zhì).20、(1)3+【解析】

(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.

(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.21、(1)詳見解析;(2)詳見解析;(3)DF=.【解析】

(1)先判斷出AD⊥BC,即可得出結(jié)論;(2)先判斷出OD∥AC,進而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結(jié)論;(3)先求出OD,再求出CD=3,進而求出CE,AE,DE,再判斷出,即可得出結(jié)論.【詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE?AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CE?AC,∵AC=5,∴CE=,∴AE=AC-CE=5-=,在Rt△CDE中,根據(jù)勾股定理得,DE=,由(2)知,OD∥AC,∴,∴,∴DF=.【點睛】此題是圓的綜合題,主要考查了圓的性質(zhì),等腰三角形的性質(zhì),相似三角形的判斷和性質(zhì),勾股定理,判斷出△CDE∽△CAD是解本題的關(guān)鍵.22、(1)A類圖書的標(biāo)價為27元,B類圖書的標(biāo)價為18元;(2)當(dāng)A類圖書每本降價少于3元時,A類圖書購進800本,B類圖書購進200本,利潤最大;當(dāng)A類圖書每本降價大于等于3元,小于5元時,A類圖書購進600本,B類圖書購進400本,利潤最大.【解析】

(1)先設(shè)B類圖書的標(biāo)價為x元,則由題意可知A類圖書的標(biāo)價為1.5x元,然后根據(jù)題意列出方程,求解即可.(2)先設(shè)購進A類圖書t本,總利潤為w元,則購進B類圖書為(1000-t)本,根據(jù)題目中所給的信息列出不等式組,求出t的取值范圍,然后根據(jù)總利潤w=總售價-總成本,求出最佳的進貨方案.【詳解】解:(1)設(shè)B類圖書的標(biāo)價為x元,則A類圖書的標(biāo)價為1.5x元,根據(jù)題意可得,化簡得:540-10x=360,解得:x=18,經(jīng)檢驗:x=18是原分式方程的解,且符合題意,則A類圖書的標(biāo)價為:1.5x=1.5×18=27(元),答:A類圖書的標(biāo)價為27元,B類圖書的標(biāo)價為18元;(2)設(shè)購進A類圖書t本,總利潤為w元,A類圖書的標(biāo)價為(27-a)元(0<a<5),由題意得,,解得:600≤t≤800,則總利潤w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故當(dāng)0<a<3時,3-a>0,t=800時,總利潤最大,且大于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論