廣西北海市、南寧市、欽州市、防城港市2024屆中考數(shù)學押題卷含解析_第1頁
廣西北海市、南寧市、欽州市、防城港市2024屆中考數(shù)學押題卷含解析_第2頁
廣西北海市、南寧市、欽州市、防城港市2024屆中考數(shù)學押題卷含解析_第3頁
廣西北海市、南寧市、欽州市、防城港市2024屆中考數(shù)學押題卷含解析_第4頁
廣西北海市、南寧市、欽州市、防城港市2024屆中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣西北海市、南寧市、欽州市、防城港市2024屆中考數(shù)學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.2.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°3.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠14.如下圖所示,該幾何體的俯視圖是()A. B. C. D.5.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是()A.相切 B.相交 C.相離 D.無法確定6.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達終點B地,此時普通列車還需行駛千米到達A地7.某經(jīng)銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊8.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.9.一枚質地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.10.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.11.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.12.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結果提前4天完成任務,若設原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在Rt△ABC中,∠A是直角,AB=2,AC=3,則BC的長為_____.14.如圖,在4×4的方格紙中(共有16個小方格),每個小方格都是邊長為1的正方形.O、A、B分別是小正方形的頂點,則扇形OAB周長等于_____.(結果保留根號及π).15.計算的結果是__________.16.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.17.有下列各式:①;②;③;④.其中,計算結果為分式的是_____.(填序號)18.分解因式:(2a+b)2﹣(a+2b)2=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.20.(6分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.21.(6分)列方程解應用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數(shù)量是第一次的2倍,但進價漲了4元/件,結果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?22.(8分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.23.(8分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調(diào)查,根據(jù)學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調(diào)查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調(diào)查學生的人數(shù),并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數(shù);(3)已知該校有1500名學生,估計該校學生對政策內(nèi)容了解程度達到A等的學生有多少人?24.(10分)如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.25.(10分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)26.(12分)如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.27.(12分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎題型.2、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質,四邊形和三角形的內(nèi)角和以及圓周角定理。3、D【解析】

先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內(nèi)錯角相等,同旁內(nèi)角互補.4、B【解析】

根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.5、B【解析】

首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進而得出直線與圓的位置關系.【詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關系是:相交.故選B.【點睛】本題考查了直線和圓的位置關系,利用中位線定理得出BC到圓心的距離與半徑的大小關系是解題的關鍵.6、C【解析】

可以用物理的思維來解決這道題.【詳解】未出發(fā)時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉折點的含義是解決這一類題的關鍵.7、C【解析】試題分析:根據(jù)題意設出未知數(shù),列出相應的不等式,從而可以解答本題.設這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點:一元一次不等式的應用8、A【解析】

首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.9、B【解析】

朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.10、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.11、C【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.12、C【解析】

本題的關鍵描述語是:“提前1天完成任務”;等量關系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)勾股定理解答即可.【詳解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC===,故答案為:【點睛】此題考查勾股定理,關鍵是根據(jù)勾股定理解答.14、π+4【解析】根據(jù)正方形的性質,得扇形所在的圓心角是90°,扇形的半徑是2.解:根據(jù)圖形中正方形的性質,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧長等于π.15、1【解析】分析:利用同分母分式的減法法則計算,分子整理后分解因式,約分即可得到結果.詳解:原式故答案為:1.點睛:本題考查了分式的加減運算,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母.16、(14+2)米【解析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應用,主要利用了同時同地物高與影長成正比的性質,作輔助線求出AB的影長若全在水平地面上的長BF是解題的關鍵.17、②④【解析】

根據(jù)分式的定義,將每個式子計算后,即可求解.【詳解】=1不是分式,=,=3不是分式,=故選②④.【點睛】本題考查分式的判斷,解題的關鍵是清楚分式的定義.18、3(a+b)(a﹣b).【解析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)=4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)反比例函數(shù)的解析式為y=﹣;一次函數(shù)的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解析】

(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數(shù)的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數(shù)的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數(shù)y=﹣的圖象位于二、四象限,∴在每個象限內(nèi),y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求三角形的面積,求函數(shù)的解析式,正確掌握反比例函數(shù)的性質是解題的關鍵.20、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個交點(,利用雙根式,y=()求二次函數(shù)解析式,而且此時對稱軸方程過交點的中點,.2.處理直角坐標系下,二次函數(shù)與幾何圖形問題:第一步要寫出每個點的坐標(不能寫出來的,可以用字母表示),寫已知點坐標的過程中,經(jīng)常要做坐標軸的垂線,第二步,利用特殊圖形的性質和函數(shù)的性質,往往是解決問題的鑰匙.21、(1)2000件;(2)90260元.【解析】

(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)單價=總價÷數(shù)量結合第二批比第一批的進價漲了4元/件,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)用(1)的結論×2可求出第二批購進該種襯衫的數(shù)量,再利用總利潤=銷售收入-成本,即可得出結論.【詳解】解:(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)題意得:-=4,解得:x=2000,經(jīng)檢驗,x=2000是所列分式方程的解,且符合題意.答:商場第一批購進襯衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完這兩批襯衫,商場共盈利90260元.【點睛】本題考查了分式方程的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據(jù)數(shù)量關系,列式計算.22、(1)見解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質得OD⊥DF,則根據(jù)等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以OH=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點,∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理.23、(1)圖見解析;(2)126°;(3)1.【解析】

(1)利用被調(diào)查學生的人數(shù)=了解程度達到B等的學生數(shù)÷所占比例,即可得出被調(diào)查學生的人數(shù),由了解程度達到C等占到的比例可求出了解程度達到C等的學生數(shù),再利用了解程度達到A等的學生數(shù)=被調(diào)查學生的人數(shù)-了解程度達到B等的學生數(shù)-了解程度達到C等的學生數(shù)-了解程度達到D等的學生數(shù)可求出了解程度達到A等的學生數(shù),依此數(shù)據(jù)即可將條形統(tǒng)計圖補充完整;(2)根據(jù)A等對應的扇形圓心角的度數(shù)=了解程度達到A等的學生數(shù)÷被調(diào)查學生的人數(shù)×360°,即可求出結論;(3)利用該?,F(xiàn)有學生數(shù)×了解程度達到A等的學生所占比例,即可得出結論.【詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統(tǒng)計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統(tǒng)計圖中的A等對應的扇形圓心角為126°.(3)1500×=1(人).答:該校學生對政策內(nèi)容了解程度達到A等的學生有1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,觀察條形統(tǒng)計圖及扇形統(tǒng)計圖,找出各數(shù)據(jù),再利用各數(shù)量間的關系列式計算是解題的關鍵.24、(1)見解析;(2)見解析.【解析】

(1)由旋轉性質可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結論成立【詳解】(1)由旋轉性質可知:CD=CG且∠DCG=90°,∴∠DGC=45°從而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋轉可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論