版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省常德外國語學校2024年高考沖刺數(shù)學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國著名數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是()A. B. C. D.2.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.43.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.24.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.5.函數(shù)的圖像大致為().A. B.C. D.6.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③7.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.8.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實數(shù)的取值范圍為()A. B. C. D.9.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.10.設函數(shù),當時,,則()A. B. C.1 D.11.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.12.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過圓的圓心且與直線垂直的直線方程為__________.14.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.15.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.16.已知數(shù)列滿足,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.18.(12分)設復數(shù)滿足(為虛數(shù)單位),則的模為______.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.20.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.21.(12分)在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.22.(10分)某企業(yè)現(xiàn)有A.B兩套設備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.圖1:A設備生產(chǎn)的樣本頻率分布直方圖表1:B設備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標值頻數(shù)2184814162(1)請估計A.B設備生產(chǎn)的產(chǎn)品質(zhì)量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應該對哪一套設備加大生產(chǎn)規(guī)模?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.2、C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎題.3、A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.4、C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.5、A【解析】
本題采用排除法:由排除選項D;根據(jù)特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數(shù),則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數(shù)解析式較復雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負等有關性質(zhì)進行逐一排除是解題的關鍵;屬于中檔題.6、C【解析】
根據(jù)直線與平面,平面與平面的位置關系進行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關系,屬于中檔題.7、B【解析】
先判斷命題的真假,進而根據(jù)復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.8、B【解析】
函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時的值,然后根據(jù)變化時,函數(shù)的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數(shù)圖象與不等式恒成立的關系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.9、C【解析】
根據(jù)在關于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質(zhì)是解題基礎.隨機變量服從正態(tài)分布,則.10、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關鍵.11、C【解析】
先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.12、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關的問題,本題屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)與已知直線垂直關系,設出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關系的靈活應用,屬于基礎題.14、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【點睛】本題考查了異面直線夾角,意在考查學生的空間想象能力和計算能力.15、【解析】
作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉(zhuǎn)化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉(zhuǎn)化為該點到準線的距離,用平面幾何方法求解.16、【解析】
項和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算,分類討論的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)取的中點,連接,,由,進而,由,得.進而平面,進而結(jié)論可得證(2)(方法一)過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點,連接,,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,則點,,,,所以,,.設平面的法向量為,由,得,令,得.同理,設平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點,上的點,使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,,,所以.【點睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題18、1【解析】
整理已知利用復數(shù)的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1【點睛】本題考查復數(shù)的除法運算與求模,屬于基礎題.19、(1)..(2)最大距離為.【解析】
(1)直接利用極坐標方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設,計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標方程為,即.直線的直角坐標方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設,,則到直線的距離為,所以線段的中點到直線的最大距離為.【點睛】本題考查了極坐標方程,參數(shù)方程,距離的最值問題,意在考查學生的計算能力.20、(1)當時,公路的長度最短為千米;(2)(千米).【解析】
(1)設切點的坐標為,利用導數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構(gòu)造函數(shù),利用導數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設,則.令,解得=10.當時,是減函數(shù);當時,是增函數(shù).所以當時,函數(shù)有極小值,也是最小值,所以,此時.故當時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導數(shù)解決實際的最值問題,涉及構(gòu)造函數(shù)法以及利用導數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實際應用,還考查解題分析能力和計算能力.21、(1)的普通方程為,的直角坐標方程為.(2)最小值為,此時【解析】
(1)由的參數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 擠壓模擬課程設計
- 銀行支行的行政后勤工作綜述
- 寵物服務員工作總結(jié)
- 港口貨物裝卸合同三篇
- 三年級科學學科的教學工作總結(jié)
- 門診護士年終總結(jié)
- 【八年級下冊歷史】期中達標測試卷
- 2024年統(tǒng)計員年終工作總結(jié)篇
- 2024-2025學年北京門頭溝區(qū) 初三(上)期末物物理試卷(含答案)
- 分包采購委托合同(2篇)
- 《機修工基礎培訓》課件
- 品質(zhì)黃燜雞加盟活動策劃
- DLT 754-2013 母線焊接技術規(guī)程
- 設立數(shù)字經(jīng)濟產(chǎn)業(yè)園公司商業(yè)計劃書
- 部編版小學道德與法治五年級上冊單元復習課件(全冊)
- 仙桃市仙桃市2023-2024學年七年級上學期期末數(shù)學檢測卷(含答案)
- 智慧農(nóng)場整體建設實施方案
- 航空公司個人年終總結(jié)(共12篇)
- 產(chǎn)品供貨方案、售后服務方案
- 蘇教版小學數(shù)學六年級上冊第4單元解決問題的策略重難點練習【含答案】
- 安徽省池州市貴池區(qū)2023-2024學年高二數(shù)學第一學期期末綜合測試模擬試題含解析
評論
0/150
提交評論