2019-2020學(xué)年人教A版廣西貴港市桂平市高二第一學(xué)期期末數(shù)學(xué)試卷(理科) 含解析_第1頁(yè)
2019-2020學(xué)年人教A版廣西貴港市桂平市高二第一學(xué)期期末數(shù)學(xué)試卷(理科) 含解析_第2頁(yè)
2019-2020學(xué)年人教A版廣西貴港市桂平市高二第一學(xué)期期末數(shù)學(xué)試卷(理科) 含解析_第3頁(yè)
2019-2020學(xué)年人教A版廣西貴港市桂平市高二第一學(xué)期期末數(shù)學(xué)試卷(理科) 含解析_第4頁(yè)
2019-2020學(xué)年人教A版廣西貴港市桂平市高二第一學(xué)期期末數(shù)學(xué)試卷(理科) 含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2019-2020學(xué)年高二第一學(xué)期期末數(shù)學(xué)試卷(理科)

一、選擇題

1.拋物線f=4y的焦點(diǎn)坐標(biāo)是()

A.(1,0)B.(0,1)C.(2,0)D.(0,2)

2,已知向量;=(2,3,4),b=(l,-m,2),若Z//E,則〃=()

A.§B.上C.獨(dú)D.旦

2233

3.某班有60名學(xué)生,其中男生有40人,現(xiàn)將男、女學(xué)生用分層抽樣法抽取12人觀看校

演講總決賽,則該班中被抽取觀看校演講總決賽的女生人數(shù)為()

A.8B.6C.4D.2

22

4.若橢圓=[上的一點(diǎn)"到其左焦點(diǎn)的距離是6,則點(diǎn)"到其右焦點(diǎn)的距離是()

4932

A.5B.6C.7D.8

5.甲、乙兩人近五次某項(xiàng)測(cè)試成績(jī)的得分情況如圖所示,則()

得分

16甲:

15乙:

14

13

12

11

10

次數(shù)

A.甲得分的平均數(shù)比乙的大

B.甲的成績(jī)更穩(wěn)定

C.甲得分的中位數(shù)比乙的大

D.乙的成績(jī)更穩(wěn)定

6.給出下列四個(gè)說(shuō)法,其中正確的是()

A.命題“若貝,】x>0”的否命題是“若貝寸后0”

B.“加>3”是“雙曲線三一-%=1的離心率大于加”的充要條件

9m2

22

XOXOO

C.命題'勺刖>0,+3x0+l<0"的否定是叼即>0,

D.命題“在△/%中,若A+B〉丁,則△/5C是銳角三角形”的逆否命題是假命題

7.從裝有完全相同的4個(gè)紅球和2個(gè)黃球的盒子中任取2個(gè)小球,則互為對(duì)立事件的是

()

A.“至少一個(gè)紅球”與“至少一個(gè)黃球”

B.“至多一個(gè)紅球”與“都是紅球”

C.“都是紅球”與“都是黃球”

D.“至少一個(gè)紅球”與“至多一個(gè)黃球”

22

8.已知直線/:x-_T3=0與雙曲線。-^-^l(a>0,b〉0)交于4,8兩點(diǎn),點(diǎn)P

(1,4)是弦48的中點(diǎn),則雙曲線C的漸近線方程是()

A.y=±4xB.y=±-i-xC.y=±^xD.y=±2x

9.求1NWCU+…**1的程序框圖,如圖所示,則圖中判斷框中可填入()

35792019

A."41010?B."W1011?C."41012?D."<2019?

2

10.已知點(diǎn)。在橢圓C:*+y2=l上,直線/:X-廣m=0,則"m=3遮"是“點(diǎn)"到直

線/的距離的最小值是行”的()

A.必要不充分條件B.充分不必要條件

C.充要條件D.既不充分也不必要條件

22

11.已知橢圓C-.=[的左、右焦點(diǎn)分別是石,點(diǎn)"在橢圓C上,且NMQ=60°,

95

則△小月的面積是()

A.5B.yC.573D.王奈

12.已知雙曲線C:/_工!_=1的左、右焦點(diǎn)分別為E,3點(diǎn)。在雙曲線C上.若△歷Q

45

為鈍角三角形,貝”Ml+I所|的取值范圍是()

A.(9,+8)B.(0,2714)U(9,+8)

C.(6,2舊)U(9,+8)D.(6,2714)

二、填空題

13.若拋物線/=2px(p>0)經(jīng)過(guò)點(diǎn)(2,1),貝"p=.

14.如圖,在四棱柱4腦-45CD中,底面48必是平行四邊形,點(diǎn)£為劭的中點(diǎn),若

AjE=xAA!+yAB+zAD,則x+?+z=.

15.若投擲一枚質(zhì)地均勻的骰子,第一次投擲的點(diǎn)數(shù)為a,第二次投擲的點(diǎn)數(shù)為6,則

的根&率為.

16.已知拋物線C:/=4x,點(diǎn)。在x軸上,直線/:(.m-2)x-y-2M4=O與拋物線C

交于附,“兩點(diǎn),若直線翻與直線加的斜率互為相反數(shù),則點(diǎn)。的坐標(biāo)是.

三、解答題

17.眾所周知,城市公交車的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客的需求,

為此,某市公交公司在某站臺(tái)的50名候車乘客中隨機(jī)抽取10名,統(tǒng)計(jì)了他們的候車時(shí)

間(單位:分鐘),得到如表.

候車時(shí)間人數(shù)

[0,5)1

[5,10)4

[10,15)2

[15,20)2

[20,25]1

(1)估計(jì)這10名乘客的平均候車時(shí)間(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代

替);

(2)估計(jì)這50名乘客的候車時(shí)間少于10分鐘的人數(shù).

18.已知拋物線C:y=2px(p>0)的焦點(diǎn)為E準(zhǔn)線方程是:x=-2.

(1)求拋物線C的方程;

(2)過(guò)點(diǎn)尸且傾斜角為二的直線/與拋物線C交于4,8兩點(diǎn),求|48|;

4

(3)設(shè)點(diǎn)附在拋物線C上,且|陰=6,求△。附的面積(0為坐標(biāo)原點(diǎn)).

19.某幼兒園舉辦主題系列活動(dòng)--“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小

朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:

打卡天數(shù)1718192021

男生人數(shù)35372

女生人數(shù)35573

(1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);

(2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

20.某公司為了解某產(chǎn)品的獲利情況,將今年1至7月份的銷售收入x(單位:萬(wàn)元)與純

利潤(rùn)y(單位:萬(wàn)元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

月份1234567

銷售收入X1313.513.81414.214.515

純利潤(rùn)y3.23.844.24.555.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤(rùn)y關(guān)于銷售收入x的線性回歸方程,再

用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

(1)求純利潤(rùn)y關(guān)于銷售收入x的線性回歸方程(精確到0.01);

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)0.1萬(wàn)元,則認(rèn)為得

到的線性回歸方程是理想的.試問(wèn)該公司所得線性回歸方程是否理想?

參考公式:s=—A—iu-------2-XV

=xynxy

2(x「x)+(X2-X)+…+(Xn-x).匕等2電康參考數(shù)據(jù):發(fā)小時(shí)…

x-nSx

+%%=301.7.

21.如圖,在三棱柱Z8C-48G中,底面是邊長(zhǎng)為4的等邊三角形,ZA,AB=ZA,AC,

D為8C的中點(diǎn).

(1)證明:仇LL平面4/〃.

(2)若△44〃是等邊三角形,求二面角。-44-C的正弦值.

22

22.已知橢圓丘三二=1(a>6>0)的焦距為2、巧,點(diǎn)/在橢圓£"上,且|以|的最小

值是"J力(0為坐標(biāo)原點(diǎn)).

(1)求橢圓£的標(biāo)準(zhǔn)方程;

(2)已知?jiǎng)又本€/與圓。:%V=t2(t>0)相切,且與橢圓£交于尺。兩點(diǎn).是否存

在實(shí)數(shù)十,使得OPLOQ?若存在,求出。的值;若不存在,請(qǐng)說(shuō)明理由.

參考答案

一、選擇題

1.拋物線N=4_K的焦點(diǎn)坐標(biāo)是()

A.(1,0)B.(0,1)C.(2,0)D.(0,2)

【分析】把拋物線方程化成標(biāo)準(zhǔn)方程,根據(jù)拋物線的焦點(diǎn)坐標(biāo)公式得出焦點(diǎn)坐標(biāo).

解:把拋物線方程化為標(biāo)準(zhǔn)方程為:x=4y,

.?.拋物線的焦點(diǎn)在y軸的正半軸,p=2,^-=1,

二拋物線的焦點(diǎn)坐標(biāo)為(0,1).

故選:B.

2.已知向量之=(2,3,4),b=(l,-m,2),若Z“V則桿()

A.1B.3C.坨D.國(guó)

2233

【分析】根據(jù)共線向量基本定理,根據(jù)g即可得出2:3=1:(-〃),解出m即可.

解:;aIIb,

?*?2:3:4=1:(-〃):2,解得m=―

故選:B.

3.某班有60名學(xué)生,其中男生有40人,現(xiàn)將男、女學(xué)生用分層抽樣法抽取12人觀看校

演講總決賽,則該班中被抽取觀看校演講總決賽的女生人數(shù)為()

A.8B.6C.4D.2

【分析】根據(jù)分層抽樣的定義建立比例關(guān)系即可.

解:由題意可得該班的女生人數(shù)為20,

則該班中被抽取觀看校演講總決賽的女生人數(shù)為20X-1|=4.

故選:C.

22

4.若橢圓三+2_=1上的一點(diǎn)"到其左焦點(diǎn)的距離是6,則點(diǎn)"到其右焦點(diǎn)的距離是()

4932

A.5B.6C.7D.8

【分析】根據(jù)題意,由橢圓的標(biāo)準(zhǔn)方程可得a的值,結(jié)合橢圓的定義可得若"為橢圓上

一點(diǎn),則有|炳|+|柩|=2a=10,又由題意,分析求解即可.

22

解:根據(jù)題意,橢圓三且_

4932

其中a=7,

若"為橢圓上一點(diǎn),則有|物|+|傷|=2a=14,

又由附到左焦點(diǎn)石的距離是6,則"到右焦點(diǎn)的距離為14-6=8;

故選:D.

5.甲、乙兩人近五次某項(xiàng)測(cè)試成績(jī)的得分情況如圖所示,則()

得分

16甲:

15乙:

14

13

12

11

10

次數(shù)

A.甲得分的平均數(shù)比乙的大

B.甲的成績(jī)更穩(wěn)定

C.甲得分的中位數(shù)比乙的大

D.乙的成績(jī)更穩(wěn)定

【分析】根據(jù)題意,由圖可得甲乙兩人五次的成績(jī),結(jié)合平均數(shù)、中位數(shù)、方差的定義

分析選項(xiàng),綜合可得答案.

解:根據(jù)題意,由圖可得:甲的五次成績(jī)依次為:10、13、12、14、16,乙的五次成績(jī)

依次為:13、14、12、12、14;

則甲的得分的平均數(shù)7=13,乙的得分的平均數(shù)司=13,

甲得分的中位數(shù)為13,以得分的中位數(shù)也為13,

而甲的波動(dòng)明顯比乙的大,即甲得分的方差明顯比乙大;

故選:D.

6.給出下列四個(gè)說(shuō)法,其中正確的是()

A.命題“若則x>0”的否命題是“若、6萬(wàn)>1,則后0”

B.“加>3”是“雙曲線q-4=1的離心率大于、歷”的充要條件

9m

2

C題m>O

成Xw

O+3xo+l<O的否定是'勺癡>0,x,+3x0+l>O”

7r

D.命題“在△48C中,若A+B>”-,則△48C是銳角三角形”的逆否命題是假命題

【分析】根據(jù)否命題的定義及寫(xiě)法即可判斷選項(xiàng)/錯(cuò)誤;根據(jù)雙曲線離心率的計(jì)算公式

及充要條件的定義即可判斷選項(xiàng)8錯(cuò)誤;根據(jù)特稱命題的否定是全稱命題即可判斷選項(xiàng)

C錯(cuò)誤,從而只能選

解:/.命題“若則x>o”的否命題是“若則后0“,該選

項(xiàng)錯(cuò)誤;

222_

B.">3時(shí),可得出/>9,.?.史工!一〉2,...雙曲線亳--%=1的離心率大于我;

99mz

雙曲線直-49+私2

=1的離心率大于丁萬(wàn),則〉2,從而得出-3或加>3,

p9m2~9~

“加>3”是“雙曲線=1的離心率大于加”的充分非必要條件,二該選項(xiàng)錯(cuò)誤;

2

XOw

c.命題'勺xo>o,+3xo+l<O的否定是“Vx>0,V+3A+1》0“,二該選項(xiàng)錯(cuò)誤;

AA+B>:-且人>丁時(shí),得不出是銳角三角形,,該命題是假命題,

又原命題和它的逆否命題互為等價(jià)命題,

.?.該命題的逆否命題是假命題,該選項(xiàng)正確.

故選:D.

7.從裝有完全相同的4個(gè)紅球和2個(gè)黃球的盒子中任取2個(gè)小球,則互為對(duì)立事件的是

()

A.“至少一個(gè)紅球”與“至少一個(gè)黃球”

B.“至多一個(gè)紅球”與“都是紅球”

C.“都是紅球”與“都是黃球”

D.“至少一個(gè)紅球”與“至多一個(gè)黃球”

【分析】利用互斥事件、對(duì)立事件的定義直接求解.

解:從裝有完全相同的4個(gè)紅球和2個(gè)黃球的盒子中任取2個(gè)小球,

在4中,“至少一個(gè)紅球”與“至少一個(gè)黃球”能同時(shí)發(fā)生,不是互斥事件,故/錯(cuò)誤;

在8中,“至多一個(gè)紅球”與“都是紅球”是對(duì)立事件,故8正確;

在C中,“都是紅球”與“都是黃球”是互斥事件,但不是對(duì)立事件,故G錯(cuò)誤;

在〃中,“至少一個(gè)紅球”與“至多一個(gè)黃球”能同時(shí)發(fā)生,不是互斥事件,故〃錯(cuò)誤.

故選:B.

22

8.已知直線/:x-y+3=0與雙曲線。-^―^l(a>0,b>0)交于4,8兩點(diǎn),點(diǎn)。

(1,4)是弦48的中點(diǎn),則雙曲線。的漸近線方程是()

A.y=±4xB.y=±--xC.y=±y-xD.y=±2x

【分析】方法一:利用點(diǎn)差法即可求得2的值,利用雙曲線的性質(zhì),即可求得雙曲線的

a

漸近線方法;

方法二:直接利用圓錐曲線的第三定義,即心?koP=e-\,其中e為圓錐曲線的離心率,

,2,2

在雙曲線中kAB*kop=-在橢圓中底,kop=---.

aa

Yi-y2

解:方法一:設(shè)彳(xi,y),B(x2f的),則M+M=2,必+必=8,----------=1.

xl-x2

2_22T

因?yàn)?8兩點(diǎn)在雙曲線C上,所以盯二'2一七:

2,2=0,

ab

22

丫1~261+了2)(了1-了2)8

則%=.即旦=2,

Xl=4,

ax;-xg_(X[+X2)(X「X2)2a

故雙曲線C的漸近線方程是尸士2x.

方法二:實(shí)質(zhì)為方法一的結(jié)論,由A?爐5,,其中心表示直線48的斜率,腦表示

a

直線W的斜率,。為的中點(diǎn).

,2

因此4=1X4,所以旦二2,

a24

因此雙曲線C的漸近線方程為y=±2x,

故選:D.

9.求,1111的程序框圖,如圖所示,則圖中判斷框中可填入()

二…2019

A."W1010?B."W1011?C."W1012?D."W2019?

【分析】分析程序的運(yùn)行過(guò)程,歸納出S與〃的對(duì)應(yīng)關(guān)系,從而得出判斷框中可填入的

條件是什么.

解:由程序框圖知,

5=1,"=2;

5=1+—,〃=3;

依此類推得,

…+―-—77=1011;

3592019

所以判斷框中可填入“〃W1010?”.

故選:A.

2

10.已知點(diǎn)。在橢圓Ct十+丫2=1上,直線/:x-y+m=0,則“m=3遮”是“點(diǎn)?到直

線/的距離的最小值是百田”的()

A.必要不充分條件B.充分不必要條件

C.充要條件D.既不充分也不必要條件

【分析】根據(jù)題意,設(shè)直線A:x-y+"=0,則直線人與直線/平行,求出4與橢圓相

切時(shí)〃的值,即可得與橢圓相切且與直線/平行的直線/,的方程,進(jìn)而結(jié)合充分必要條

件的定義分析可得答案.

解:根據(jù)題意,設(shè)直線A:x-『?〃=(),則直線人與直線/平行,

與橢圓方程聯(lián)立,整理得5f+8M4〃2-4=0,令△=64〃2-20(44-4)=0,解得n=±逐,

此時(shí)直線人的方程為X-v±”n=0,與橢圓相切且與直線/平行,

若%3娓,貝"直線/與,之間的距離d」3y石?二百3,即點(diǎn)戶到直線/的距離的

72

最小值是Ji。,

反之當(dāng)點(diǎn)p到直線/的距離的最小值是丁元,即直線/與/1之間的最小距離時(shí),

m=或m=-3Vs?

故“m=3代”是“點(diǎn)尸到直線/的距離的最小值是百5”的充分不必要條件;

故選:B.

22

11.已知橢圓C:^—^—=1的左、右焦點(diǎn)分別是F、,Q,點(diǎn)。在橢圓C上,且NMQ=60°

95

則△小月的面積是()

A.5B.-1C.573D.王奈

【分析】利用橢圓方程求出a,b,c,通過(guò)橢圓的定義結(jié)合余弦定理求出|歷I,|所I,

然后求解三角形的面積.

解:由題意可得a=3,c=<9-5=2.

T^\Pr\=m,\PF2\=n,

則則加"〃=6①,

由余弦定理得,4=m+n-2/mcos60°=m+n-mrQ),

解得m*,n=_-,

故△〃記的面積是

]m|FIF2|sin60°=^-X-^-X4乂坐~二’平:

故選:D.

12.已知雙曲線C:=[的左、右焦點(diǎn)分別為Fy,點(diǎn)戶在雙曲線C上.若

45

為鈍角三角形,貝”歷|+|所|的取值范圍是()

A.(9,+oo)B.(0,2g)U(9,+8)

C.(6,2舊)U(9,+8)D.(6,2VT4)

【分析】利用雙曲線的求出焦距,設(shè)出戶的位置,求出結(jié)合勾股定理,轉(zhuǎn)化求解

PF2,

I歷I+I至I的取值范圍.

解:由題意可得c=J4+5=&

不妨設(shè)點(diǎn)?在雙曲線C的右支上,當(dāng)小,X軸時(shí),

22cc

將x=3代入三_匚=1,得片±亮即|PF"4,

45222

1O

則|PFi|=|PFzl+2a=詈,故I用1+1用1=9;

當(dāng)用_L用時(shí),貝比,解得|PF/=2+m,|PF2|=-2+V14,

則也%|+|PF2b2舊,且|用|+|附>2c=6.

綜上,|用|+|所|的取值范圍是(6,2dH)U(9,+8).

故選:C.

二、填空題:本大題共4小題,每小題5分,共20分.將答案填在答題卡中的橫線上.

13.若拋物線/=2px(p>0)經(jīng)過(guò)點(diǎn)(2,1),則0=_工_.

~4~

【分析】利用拋物線經(jīng)過(guò)的點(diǎn),代入求解即可.

解:由題意可得4P=1,則

4

故答案為:—.

4

14.如圖,在四棱柱463-48G4中,底面48微是平行四邊形,點(diǎn)£為劭的中點(diǎn),若

AjE=xAAJ+yAB+zAD,則A+y+z=0.

【分析】根據(jù)向量的三角形法則結(jié)合已知條件即可求解;

解:連接〃"(圖略),

由題意可得冠4位旺同,

.91?1?1■???

則ApAE-AAi或AB號(hào)AD-AA「

因?yàn)锳[E=xAA[+yAB+zAD,

所以x=-1,y=z=7;,

所以x+y+z=0.

故答案為:0

15.若投擲一枚質(zhì)地均勻的骰子,第一次投擲的點(diǎn)數(shù)為a,第二次投擲的點(diǎn)數(shù)為6,則

的概率為吳.

~12~

【分析】用(a,b)表示兩次投擲的點(diǎn)數(shù).列表求出總計(jì)有36種情況,滿足條件的有

15種,由此能求出的概率.

解:如表所示,用(a,6)表示兩次投擲的點(diǎn)數(shù).

ba123456

1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)

2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)

3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)

4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)

5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)

6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

pUOT

總計(jì)有36種情況,滿足條件的有15種,故6>a的概率為:

3612

16.已知拋物線C:/=4x,點(diǎn)。在x軸上,直線/:(.m-2)x-y-2M4=0與拋物線C

交于M,"兩點(diǎn),若直線翻與直線加的斜率互為相反數(shù),則點(diǎn)。的坐標(biāo)是(-2,0).

【分析】直線制與直線斜的斜率互為相反數(shù),設(shè)。(",0),"(x,yi),N(xi,y2),

則斜率可以表示,再聯(lián)立拋物線和直線即可求解.

解:如圖所示,直線服加交丫軸分別于AB點(diǎn),

不妨設(shè)加=3,則直線方程為y+2=x,

聯(lián)立拋物線/=4x,得:y-4y-8=0,

.".yi+y2=4,y\y2=-8,

設(shè)0(〃,0),"(x,y),N(.x2,必)

?.?直線朗與直線6W的斜率互為相反數(shù),

...力丫2

+----=-0,

xi-nx2-n

二%(%2-n)+y2(%i-/7)=0,Vx=j^-2

Ay(M+2)+y2(yi+2)-n(卜+%)=0

2y,y2+2(必+必)-n(必+%)=0

-16+8-4n=0

n=-2.

三、解答題:共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

17.眾所周知,城市公交車的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客的需求,

為此,某市公交公司在某站臺(tái)的50名候車乘客中隨機(jī)抽取10名,統(tǒng)計(jì)了他們的候車時(shí)

間(單位:分鐘),得到如表.

候車時(shí)間人數(shù)

[0,5)1

[5,10)4

[10,15)2

[15,20)2

[20,25]1

(1)估計(jì)這10名乘客的平均候車時(shí)間(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代

替);

(2)估計(jì)這50名乘客的候車時(shí)間少于10分鐘的人數(shù).

【分析】(1)由表中數(shù)據(jù)計(jì)算平均數(shù)即可;

(2)根據(jù)頻率與樣本容量、頻數(shù)的關(guān)系,計(jì)算即可.

解:(1)由表中數(shù)據(jù),計(jì)算

—11

X=6x(2.5X1+7.5X4+12.5X2+17.5X2+22.5X1=^X115=11.5,

所以這10名乘客的平均候車時(shí)間約為11.5分鐘.

(2)因?yàn)闃颖局泻蜍嚂r(shí)間少于10分鐘的頻率為

所以可估計(jì)這50名乘客的候車時(shí)間少于10分鐘的人數(shù)為50X^=25?

18.已知拋物線C:y=2px(p>0)的焦點(diǎn)為尸,準(zhǔn)線方程是:x=-2.

(1)求拋物線C的方程;

TT

(2)過(guò)點(diǎn)尸且傾斜角為一的直線/與拋物線C交于4,,兩點(diǎn),求|/夕|;

4

(3)設(shè)點(diǎn)"在拋物線C上,且|雨=6,求△。附的面積(0為坐標(biāo)原點(diǎn)).

【分析】(1)拋物線的基本性質(zhì):/=2pm>準(zhǔn)線方程為x=T,焦點(diǎn)坐標(biāo)為(聾,0);

(2)拋物線的焦點(diǎn)弦問(wèn)題故|/夕|=M+M+P;

(3)拋物線的定義的運(yùn)用:到焦點(diǎn)的距離與到準(zhǔn)線距離相等;="點(diǎn)的坐標(biāo)的

面積.

解:(1)因?yàn)閽佄锞€C的準(zhǔn)線方程為x=-2,所以另■=/即P=4.

故拋物線C的方程為y=8x.

(2)因?yàn)橹本€/過(guò)點(diǎn)尸,且傾斜角為工,所以直線/的方程為y=x-2.

4

,2=Q

聯(lián)立《V-12A+4=0.

,y=x-2

設(shè)4(%i,yi),B(x2,y2),則制+至=12;

故=%I+A2+P=12+4=16.

(3)設(shè)的(心皿),

因?yàn)?4月=6,所以工0十注=6=癡=4.

將(4,%)代入方程/=8my0=±圾,

則△哂的面積為"OF||y0|=yX2X4V2=W2-

19.某幼兒園舉辦“jwe”主題系列活動(dòng)--“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小

朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:

打卡天數(shù)1718192021

男生人數(shù)35372

女生人數(shù)35573

(1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);

(2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

【分析】(1)由調(diào)查表能求出男生平均打卡的天數(shù).

(2)男生打卡21天的2人記為a,b,女生打卡21天的3人記為c,d,e,從打卡21

天的小朋友中任選2人,利用列舉法能求出選到男生和女生各1人的概率為p哈=1?.

105

解:(1)男生平均打卡的天數(shù):

一17義3+18X5+19X3+20義7+21X2_—

x=3+5+3+7+2

(2)男生打卡21天的2人記為a,b,女生打卡21天的3人記為c,d,e,

則從打卡21天的小朋友中任選2人的情況有:

(a,h),(a,c),(a,cf),(a,e),(伉c),(h,d),(b,e),(c,cb,

(c,e),Qd,e),共10種,

其中男生和女生各1人的情況有:

(a,c),(a,d),(a,e),(b,c),(b,cb,(h,e),共6種.

故選到男生和女生各1人的概率為P▲洛.

105

20.某公司為了解某產(chǎn)品的獲利情況,將今年1至7月份的銷售收入x(單位:萬(wàn)元)與純

利潤(rùn)y(單位:萬(wàn)元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

月份1234567

銷售收入£1313.513.81414.214.515

純利潤(rùn)y3.23.844.24.555.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤(rùn)y關(guān)于銷售收入x的線性回歸方程,再

用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

(1)求純利潤(rùn)y關(guān)于銷售收入x的線性回歸方程(精確到0.01);

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)0.1萬(wàn)元,則認(rèn)為得

到的線性回歸方程是理想的.試問(wèn)該公司所得線性回歸方程是否理想?

仝*、AX^i+x2y?+…+X”Vn一

參考公式:s=—A—iU--------2-XV

=xyn入了

2(x「x)+62-X)+…+(Xn-x).匕告@電康參考數(shù)據(jù):發(fā)小時(shí)…

x-nSx

+%%=301?7.

【分析】(1)由已知求得彳,y,再由a=?-b?求得。與a的值,則利潤(rùn)y關(guān)

sx

于銷售收入X的線性回歸方程可求;

(2)在(1)中求得的線性回歸方程中分別?。?13與x=15求得,再比較??與

yIy-yI

0.1的大小得結(jié)論.

解:G).=13.5+13.8+14+14.

5

-3.8+4+4.2+4.5+5,。

y=-----------------=4.3,

sx

3017

-14X4.3

■pX[(13.5-14產(chǎn)+(13.8-14)2+(14-14)2+(14.2-14)2+(14.5-14)2]

b

0.14

=1.21,

0.116

0.14

a=y-bx=4.3-X14^-12.60.

0.116

;

故純利潤(rùn)y關(guān)于銷售收入x的線性回歸方程是丫口.21X-12.60

(2)當(dāng)x=13時(shí),7=1,21X13-12.60=3.1?|3.13-3.2|=0,07<0.1;

當(dāng)x=15時(shí),y=l.21X15-12.60=5.55|5.55-5.5|=0.05<0.1.

故該公司所得線性回歸方程是理想的.

21.如圖,在三棱柱/SC-48G中,底面48c是邊長(zhǎng)為4的等邊三角形,N4AB="AC,

D為8c的中點(diǎn).

(1)證明:仇?JL平面44Z

(2)若△44?是等邊三角形,求二面角。-44-C的正弦值.

H

【分析】(1)連接48,推導(dǎo)出四△44?,AB=AC.從而5C_L4〃.推導(dǎo)出所江

AD.由此能證明BC1.平面A^AD.

(2)取47的中點(diǎn)0,連接40,推導(dǎo)出4OL4。.以0為原點(diǎn),力所在直線為x軸,過(guò)

0作8C的平行線為y軸,04i所在直線為z軸建立空間直角坐標(biāo)系0-xyz.得用向量法

能求出二面角。-C的正弦值.

解:(1)證明:連接4員

因?yàn)镹44QN4/C,AB=AG,X4=A4,

所以△44的△4/C,所以4夕=4C.

因?yàn)椤椋サ闹悬c(diǎn),所以8C_L4〃.

因?yàn)椤?C的中點(diǎn),JLAB=AC,所以BCLAD.

因?yàn)?〃(~147=〃,所以8CJ"平面44?.

(2)解:取47的中點(diǎn)0,連接40,因?yàn)椤?4?是等邊三角形,所以4OL4Z

由(1)可知8CJ"平面447,則8C,AD,4。兩兩垂直,

故以0為原點(diǎn),力所在直線為x軸,過(guò)0作)?的平行線為y軸,04所在直線為z軸建

立空間直角坐標(biāo)系0-xyz.

因?yàn)榈酌嫠腃是邊長(zhǎng)為4的等邊三角形,所以AD=2美.

因?yàn)椤?47是等邊三角形,所以4—3.

所以A(匾,0,0),4(0,0,3),B(-V3-2,0),C(-V3>-2,0),

貝寸百=(S,0>3),AC=(-2V3--2,0).

設(shè)平

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論