山東省高密市2024屆畢業(yè)升學考試模擬卷數學卷含解析_第1頁
山東省高密市2024屆畢業(yè)升學考試模擬卷數學卷含解析_第2頁
山東省高密市2024屆畢業(yè)升學考試模擬卷數學卷含解析_第3頁
山東省高密市2024屆畢業(yè)升學考試模擬卷數學卷含解析_第4頁
山東省高密市2024屆畢業(yè)升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省高密市2024屆畢業(yè)升學考試模擬卷數學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一組數據3、2、1、2、2的眾數,中位數,方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.22.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數占體育社團人數的D.據此估計全校1000名八年級同學,選擇科目B的有140人3.氣象臺預報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨4.下面四個立體圖形,從正面、左面、上面對空都不可能看到長方形的是A. B. C. D.5.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.806.下列圖形中為正方體的平面展開圖的是()A. B.C. D.7.已知一組數據,,,,的平均數是2,方差是,那么另一組數據,,,,,的平均數和方差分別是.A. B. C. D.8.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉,使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數為()A.80° B.90° C.100° D.120°9.的值是A. B. C. D.10.計算(—2)2-3的值是()A、1B、2C、—1D、—2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在等邊△ABC中,AB=4,D是BC的中點,將△ABD繞點A旋轉后得到△ACE,連接DE交AC于點F,則△AEF的面積為_______.12.已知關于x的方程x213.如圖,已知,第一象限內的點A在反比例函數y=的圖象上,第四象限內的點B在反比例函數y=的圖象上.且OA⊥OB,∠OAB=60°,則k的值為_________.14.如圖,AB為半圓的直徑,且AB=2,半圓繞點B順時針旋轉40°,點A旋轉到A′的位置,則圖中陰影部分的面積為_____(結果保留π).15.已知關于x的函數y=(m﹣1)x2+2x+m圖象與坐標軸只有2個交點,則m=_______.16.計算的結果是__________.三、解答題(共8題,共72分)17.(8分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系.圖1圖2圖3(1)思路梳理將△ABE繞點A逆時針旋轉至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線.易證△AFG,故EF,BE,DF之間的數量關系為;(2)類比引申如圖2,在圖1的條件下,若點E,F由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系,并給出證明.(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.18.(8分)數學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數式;若x是方程1x=﹣x﹣9的解,求紙片①上代數式的值.19.(8分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.20.(8分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.21.(8分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.22.(10分)計算:2sin30°﹣|1﹣|+()﹣123.(12分)為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?24.某商城銷售A,B兩種自行車型自行車售價為2

100元輛,B型自行車售價為1

750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80

000元購進A型自行車的數量與用64

000元購進B型自行車的數量相等.求每輛A,B兩種自行車的進價分別是多少?現在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數量不超過A型自行車數量的2倍,總利潤不低于13

000元,求獲利最大的方案以及最大利潤.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:從小到大排列此數據為:1,2,2,2,3;數據2出現了三次最多為眾數,2處在第3位為中位數.平均數為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數是2,眾數是2,方差為0.1.故選B.2、B【解析】

A選項先求出調查的學生人數,再求選科目E的人數來判定,B選項先求出A科目人數,再利用×360°判定即可,C選項中由D的人數及總人數即可判定,D選項利用總人數乘以樣本中B人數所占比例即可判定.【詳解】解:調查的學生人數為:12÷24%=50(人),選科目E的人數為:50×10%=5(人),故A選項正確,選科目A的人數為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數為10,總人數為50人,所以選科目D的人數占體育社團人數的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準確信息.3、C【解析】試題解析:根據概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.4、B【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長方形的圖形.【詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;C、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;D、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤.故選:B.【點睛】本題重點考查三視圖的定義以及考查學生的空間想象能力.5、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.6、C【解析】

利用正方體及其表面展開圖的特點依次判斷解題.【詳解】由四棱柱四個側面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【點睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關鍵.7、D【解析】

根據數據的變化和其平均數及方差的變化規(guī)律求得新數據的平均數及方差即可.【詳解】解:∵數據x1,x2,x3,x4,x5的平均數是2,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數是3×2-2=4;∵數據x1,x2,x3,x4,x5的方差為,∴數據3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當數據都加上一個數(或減去一個數)時,平均數也加或減這個數,方差不變,即數據的波動情況不變;當數據都乘以一個數(或除以一個數)時,平均數也乘以或除以這個數,方差變?yōu)檫@個數的平方倍.8、B【解析】

根據旋轉的性質得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據三角形外角性質得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉的性質,全等三角形的性質和判定,三角形內角和定理,三角形外角性質的應用,掌握旋轉變換的性質是解題的關鍵.9、D【解析】

根據特殊角三角函數值,可得答案.【詳解】解:,故選:D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.10、A【解析】本題考查的是有理數的混合運算根據有理數的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數的加法、乘方法則。二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

首先,利用等邊三角形的性質求得AD=2;然后根據旋轉的性質、等邊三角形的性質推知△ADE為等邊三角形,則DE=AD,便可求出EF和AF,從而得到△AEF的面積.【詳解】解:∵在等邊△ABC中,∠B=60o,AB=4,D是BC的中點,∴AD⊥BC,∠BAD=∠CAD=30o,∴AD=ABcos30o=4×=2,根據旋轉的性質知,∠EAC=∠DAB=30o,AD=AE,∴∠DAE=∠EAC+∠CAD=60o,∴△ADE的等邊三角形,∴DE=AD=2,∠AEF=60o,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60o=×=3,∴S△AEF=EF×AF=××3=.故答案為:.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,熟記各性質并求出△ADE是等邊三角形是解題的關鍵.12、m<9【解析】試題分析:若一元二次方程有兩個不相等的實數根,則根的判別式△=b2﹣4ac>0,建立關于m的不等式,解不等式即可求出m的取值范圍.∵關于x的方程x2﹣6x+m=0有兩個不相等的實數根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考點:根的判別式.13、-6【解析】如圖,作AC⊥x軸,BD⊥x軸,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,設A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把點B代入y=得,-=,解得k=-6,故答案為-6.14、【解析】【分析】根據題意可得出陰影部分的面積等于扇形ABA′的面積加上半圓面積再減去半圓面積.【詳解】∵S陰影=S扇形ABA′+S半圓-S半圓=S扇形ABA′==,故答案為.【點睛】本題考查了扇形面積的計算以及旋轉的性質,熟記扇形面積公式且能準確識圖是解題的關鍵.15、1或0或【解析】

分兩種情況討論:當函數為一次函數時,必與坐標軸有兩個交點;

當函數為二次函數時,將(0,0)代入解析式即可求出m的值.【詳解】解:(1)當m﹣1=0時,m=1,函數為一次函數,解析式為y=2x+1,與x軸交點坐標為(﹣,0);與y軸交點坐標(0,1).符合題意.(2)當m﹣1≠0時,m≠1,函數為二次函數,與坐標軸有兩個交點,則過原點,且與x軸有兩個不同的交點,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.將(0,0)代入解析式得,m=0,符合題意.(3)函數為二次函數時,還有一種情況是:與x軸只有一個交點,與Y軸交于交于另一點,這時:△=4﹣4(m﹣1)m=0,解得:m=.故答案為1或0或.【點睛】此題考查一次函數和二次函數的性質,解題關鍵是必須分兩種情況討論,不可盲目求解.16、1【解析】分析:利用同分母分式的減法法則計算,分子整理后分解因式,約分即可得到結果.詳解:原式故答案為:1.點睛:本題考查了分式的加減運算,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母.三、解答題(共8題,共72分)17、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據旋轉得:計算即點共線,再根據SAS證明△AFE≌△AFG,得EF=FG,可得結論EF=DF+DG=DF+AE;

(2)如圖2,同理作輔助線:把△ABE繞點A逆時針旋轉至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;

(3)如圖3,同理作輔助線:把△ABD繞點A逆時針旋轉至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結論.試題解析:(1)思路梳理:如圖1,把△ABE繞點A逆時針旋轉至△ADG,可使AB與AD重合,即AB=AD,由旋轉得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點F.D.

G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點A逆時針旋轉至△ADG,可使AB與AD重合,則G在DC上,由旋轉得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯(lián)想拓展:如圖3,把△ABD繞點A逆時針旋轉至△ACG,可使AB與AC重合,連接EG,由旋轉得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴18、(1)7x1+4x+4;(1)55.【解析】

(1)根據整式加法的運算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數式即可求解.【詳解】解:(1)紙片①上的代數式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數式的值為55.【點睛】本題考查了整式加減混合運算,解一元一次方程,代數式求值,在解題的過程中要牢記并靈活運用整式加減混合運算的法則.特別是對于含括號的運算,在去括號時,一定要注意符號的變化.19、(1)作圖見解析;(2)證明見解析;【解析】

(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據相似三角形的性質得到結論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質.20、(1)詳見解析;(2)平行四邊形.【解析】

(1)由“三線合一”定理即可得到結論;

(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據垂直平分線的性質有AB=BE,于是AD=BE,進而得到AD=EC,根據平行四邊形的判定即可得到結論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.21、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.22、4﹣【解析】

原式利用絕對值的代數意義,特殊角的三角函數值,負整數指數冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點睛】本題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.23、(1)購買A型學習

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論