山東省濟(jì)寧市梁山縣街道第一中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
山東省濟(jì)寧市梁山縣街道第一中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
山東省濟(jì)寧市梁山縣街道第一中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
山東省濟(jì)寧市梁山縣街道第一中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
山東省濟(jì)寧市梁山縣街道第一中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省濟(jì)寧市梁山縣街道第一中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.若反比例函數(shù)的圖像經(jīng)過點(diǎn),則一次函數(shù)與在同一平面直角坐標(biāo)系中的大致圖像是()A. B. C. D.2.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.3.某青年排球隊(duì)12名隊(duì)員年齡情況如下:年齡1819202122人數(shù)14322則這12名隊(duì)員年齡的眾數(shù)、中位數(shù)分別是()A.20,19 B.19,19 C.19,20.5 D.19,204.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉(zhuǎn),得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形5.如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m6.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-27.下列運(yùn)算中,正確的是()A.(ab2)2=a2b4B.a(chǎn)2+a2=2a4C.a(chǎn)2?a3=a6D.a(chǎn)6÷a3=a28.化簡的結(jié)果為()A.﹣1 B.1 C. D.9.某班組織了針對全班同學(xué)關(guān)于“你最喜歡的一項(xiàng)體育活動”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結(jié)論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學(xué)生 D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的10%10.函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點(diǎn)P是y=的圖象上一動點(diǎn),PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)B.給出如下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP.其中所有正確結(jié)論的序號是()A.①②③ B.②③④ C.①③④ D.①②④二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在中,AB為直徑,點(diǎn)C在上,的平分線交于D,則______12.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點(diǎn)A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點(diǎn)E、F;(2)作直線EF,直線EF交AC于點(diǎn)O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.13.如圖,正方形ABCD中,E為AB的中點(diǎn),AF⊥DE于點(diǎn)O,那么等于()A.; B.; C.; D..14.如圖,某數(shù)學(xué)興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.15.為有效開展“陽光體育”活動,某校計(jì)劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.16.如圖,無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號)三、解答題(共8題,共72分)17.(8分)某校七年級(1)班班主任對本班學(xué)生進(jìn)行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進(jìn)行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計(jì)圖中D類所對應(yīng)扇形的圓心角為_____度,請補(bǔ)全條形統(tǒng)計(jì)圖;學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.18.(8分)在矩形ABCD中,AD=2AB,E是AD的中點(diǎn),一塊三角板的直角頂點(diǎn)與點(diǎn)E重合,兩直角邊與AB,BC分別交于點(diǎn)M,N,求證:BM=CN.19.(8分)解不等式組:,并把解集在數(shù)軸上表示出來。20.(8分)如圖1,點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=1OD,OE=1OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.21.(8分)小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認(rèn)為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問的結(jié)論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關(guān)系.22.(10分)小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?試求表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.23.(12分)如圖,∠MON的邊OM上有兩點(diǎn)A、B在∠MON的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠MON的兩邊的距離相等,且△PAB的周長最?。ūA糇鲌D痕跡,不寫作法)24.我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可??;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負(fù),聯(lián)系反比例函數(shù),一次函數(shù)的性質(zhì)即可確定函數(shù)圖象.【詳解】解:由于函數(shù)的圖像經(jīng)過點(diǎn),則有∴圖象過第二、四象限,

∵k=-1,

∴一次函數(shù)y=x-1,

∴圖象經(jīng)過第一、三、四象限,

故選:D.【點(diǎn)睛】本題考查反比例函數(shù)的圖象與性質(zhì),一次函數(shù)的圖象,解題的關(guān)鍵是求出函數(shù)的解析式,根據(jù)解析式進(jìn)行判斷;2、A【解析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.3、D【解析】

先計(jì)算出這個隊(duì)共有1+4+3+2+2=12人,然后根據(jù)眾數(shù)與中位數(shù)的定義求解.【詳解】這個隊(duì)共有1+4+3+2+2=12人,這個隊(duì)隊(duì)員年齡的眾數(shù)為19,中位數(shù)為=1.故選D.【點(diǎn)睛】本題考查了眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)叫這組數(shù)據(jù)的眾數(shù).也考查了中位數(shù)的定義.4、A【解析】

根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵

△ABC

延底邊

BC

翻折得到

△DBC

,∴AB=BD

,

AC=CD

,∵AB=AC

,∴AB=BD=CD=AC

,∴

四邊形

ABDC

是菱形;故選A.【點(diǎn)睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.5、D【解析】

利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學(xué)的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出相似三角形的模型.6、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點(diǎn):解一元二次方程-因式分解法.7、A【解析】

直接利用積的乘方運(yùn)算法則以及合并同類項(xiàng)法則和同底數(shù)冪的乘除運(yùn)算法則分別分析得出答案.【詳解】解:A、(ab2)2=a2b4,故此選項(xiàng)正確;B、a2+a2=2a2,故此選項(xiàng)錯誤;C、a2?a3=a5,故此選項(xiàng)錯誤;D、a6÷a3=a3,故此選項(xiàng)錯誤;故選:A.【點(diǎn)睛】此題主要考查了積的乘方運(yùn)算以及合并同類項(xiàng)和同底數(shù)冪的乘除運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.8、B【解析】

先把分式進(jìn)行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.9、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項(xiàng)進(jìn)行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項(xiàng)錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項(xiàng)錯誤;C.全班共有12+20+8+4+6=50名學(xué)生,故C選項(xiàng)正確;D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的=8%,故D選項(xiàng)錯誤,故選C.【點(diǎn)睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進(jìn)行解題是關(guān)鍵.10、C【解析】解:∵A、B是反比函數(shù)上的點(diǎn),∴S△OBD=S△OAC=,故①正確;當(dāng)P的橫縱坐標(biāo)相等時PA=PB,故②錯誤;∵P是的圖象上一動點(diǎn),∴S矩形PDOC=4,∴S四邊形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正確;連接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正確;綜上所述,正確的結(jié)論有①③④.故選C.點(diǎn)睛:本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)中系數(shù)k的幾何意義是解答此題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

由AB為直徑,得到,由因?yàn)镃D平分,所以,這樣就可求出.【詳解】解:為直徑,

,

又平分,

故答案為1.【點(diǎn)睛】本題考查了圓周角定理:在同圓和等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半同時考查了直徑所對的圓周角為90度.12、到線段兩端點(diǎn)的距離相等的點(diǎn)在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】

先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點(diǎn)的距離相等的點(diǎn)在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點(diǎn)睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.13、D【解析】

利用△DAO與△DEA相似,對應(yīng)邊成比例即可求解.【詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.14、(50﹣).【解析】

過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.15、1【解析】

設(shè)購買籃球x個,則購買足球個,根據(jù)總價單價購買數(shù)量結(jié)合購買資金不超過3000元,即可得出關(guān)于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設(shè)購買籃球x個,則購買足球個,根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.【點(diǎn)睛】本題考查了一元一次不等式的應(yīng)用,根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式是解題的關(guān)鍵.16、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計(jì)算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計(jì)算AD+BD即可.詳解:如圖,∵無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點(diǎn)間的距離為100(1+)米.故答案為100(1+).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題:解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.三、解答題(共8題,共72分)17、48;105°;2【解析】試題分析:根據(jù)B的人數(shù)和百分比求出總?cè)藬?shù),根據(jù)D的人數(shù)和總?cè)藬?shù)的得出D所占的百分比,然后得出圓心角的度數(shù),根據(jù)總?cè)藬?shù)求出C的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖;記A類學(xué)生擅長書法的為A1,擅長繪畫的為A2,根據(jù)題意畫出表格,根據(jù)概率的計(jì)算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補(bǔ)全圖形如下:(2)記A類學(xué)生擅長書法的為A1,擅長繪畫的為A2,則可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考點(diǎn):統(tǒng)計(jì)圖、概率的計(jì)算.18、證明見解析.【解析】試題分析:作于點(diǎn)F,然后證明≌,從而求出所所以BM與CN的長度相等.試題解析:在矩形ABCD中,AD=2AB,E是AD的中點(diǎn),作EF⊥BC于點(diǎn)F,則有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E為AB的中點(diǎn),∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.19、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:20、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】

(1)延長ED交AG于點(diǎn)H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運(yùn)用等量代換證明∠AHE=90°即可;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,α=150°;②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【詳解】(1)如圖1,延長ED交AG于點(diǎn)H,∵點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:(Ⅰ)α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°°,即α=30°;(Ⅱ)α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,同理可求∠BOG′=30°,∴α=180°?30°=150°.綜上所述,當(dāng)∠OAG′=90°時,α=30°或150°.②如圖3,當(dāng)旋轉(zhuǎn)到A.

O、F′在一條直線上時,AF′的長最大,∵正方形ABCD的邊長為1,∴OA=OD=OC=OB=,∵OG=1OD,∴OG′=OG=,∴OF′=1,∴AF′=AO+OF′=+1,∵∠COE′=45°,∴此時α=315°.【點(diǎn)睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵,注意特殊角的三角函數(shù)值的應(yīng)用.21、(1)詳見解析;(2)詳見解析;(3)【解析】

(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;

(2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;

(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.【詳解】(1)∵AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論