河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考前最后一卷含解析_第1頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考前最后一卷含解析_第2頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考前最后一卷含解析_第3頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考前最后一卷含解析_第4頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個頂點O在坐標(biāo)原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.802.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.3.用加減法解方程組時,若要求消去,則應(yīng)()A. B. C. D.4.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣15.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機(jī)取出一顆棋子,取得白色棋子的概率是,如再往盒中放進(jìn)3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆6.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°7.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為()A.90° B.95° C.105° D.110°8.計算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b69.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.410.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是5二、填空題(本大題共6個小題,每小題3分,共18分)11.已知二次函數(shù)的圖像與軸交點的橫坐標(biāo)是和,且,則________.12.如圖,線段AB的長為4,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形ACD和BCE,連結(jié)DE,則DE長的最小值是_____.13.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.14.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到ΔA′B′C′,且點A在A′B′上,則旋轉(zhuǎn)角為________________°.15.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.16.的算術(shù)平方根為______.三、解答題(共8題,共72分)17.(8分)計算:-2-2-+018.(8分)為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機(jī)抽取部分村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)這次參與調(diào)查的村民人數(shù)為人;(2)請將條形統(tǒng)計圖補(bǔ)充完整;(3)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);(4)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.19.(8分)某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A,B,C,D,E這五個景點共接待游客萬人,扇形統(tǒng)計圖中E景點所對應(yīng)的圓心角的度數(shù)是,并補(bǔ)全條形統(tǒng)計圖.(2)甲,乙兩個旅行團(tuán)在A,B,D三個景點中隨機(jī)選擇一個,這兩個旅行團(tuán)選中同一景點的概率是.20.(8分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.21.(8分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進(jìn)校園”活動,某校團(tuán)委組織八年級100名學(xué)生進(jìn)行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進(jìn)行整理,得到下列不完整的統(tǒng)計圖表.組別分?jǐn)?shù)段頻次頻率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08請根據(jù)所給信息,解答以下問題:(1)表中a=______,b=______;(2)請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.22.(10分)隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?23.(12分)如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最?。虎僭谥本€m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結(jié)果)24.某市教育局為了了解初一學(xué)生第一學(xué)期參加社會實踐活動的情況,隨機(jī)抽查了本市部分初一學(xué)生第一學(xué)期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補(bǔ)全條形統(tǒng)計圖;如果該市共有初一學(xué)生20000人,請你估計“活動時間不少于5天”的大約有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標(biāo)為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.2、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標(biāo)系中的圖象情況,而這與“b”的取值無關(guān).3、C【解析】

利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應(yīng)①×5+②×3,

故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.4、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.5、B【解析】試題解析:由題意得,解得:.故選B.6、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.7、C【解析】

根據(jù)等腰三角形的性質(zhì)得到∠CDA=∠A=50°,根據(jù)三角形內(nèi)角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對等角得到∠B=∠BCD,根據(jù)三角形外角性質(zhì)可知∠B+∠BCD=∠CDA,進(jìn)而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據(jù)作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點睛】本題考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理、線段垂直平分線定理以及三角形外角性質(zhì),熟練掌握各個性質(zhì)定理是解題關(guān)鍵.8、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進(jìn)行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.9、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.10、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D二、填空題(本大題共6個小題,每小題3分,共18分)11、-12【解析】

令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關(guān)系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點的橫坐標(biāo)是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,函數(shù)與x軸的交點的橫坐標(biāo)就是方程的根,解題的關(guān)鍵是利用根與系數(shù)的關(guān)系,整體代入求解.12、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點:不等式的性質(zhì)點評:本題考查不等式的性質(zhì),會用勾股定理,完全平方公式,不等關(guān)系等知識,它們是解決本題的關(guān)鍵13、75°【解析】【分析】根據(jù)絕對值及偶次方的非負(fù)性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點睛】本題考查了特殊角的三角函數(shù)值及非負(fù)數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.14、50度【解析】

由將△ACB繞點C順時針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.15、2n+1【解析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規(guī)律,根據(jù)規(guī)律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數(shù)字的變化類問題,關(guān)鍵是通過觀察分析得出規(guī)律,根據(jù)規(guī)律求解.16、【解析】

首先根據(jù)算術(shù)平方根的定義計算先=2,再求2的算術(shù)平方根即可.【詳解】∵=2,∴的算術(shù)平方根為.【點睛】本題考查了算術(shù)平方根,屬于簡單題,熟悉算數(shù)平方根的概念是解題關(guān)鍵.三、解答題(共8題,共72分)17、【解析】

直接利用負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值分別化簡,再根據(jù)實數(shù)的運算法則即可求出答案.【詳解】解:原式=【點睛】本題考查了負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值,熟記這些運算法則是解題的關(guān)鍵.18、(1)120;(2)42人;(3)90°;(4)16【解析】

(1)直接利用腰鼓所占比例以及條形圖中人數(shù)即可得出這次參與調(diào)查的村民人數(shù);(2)利用條形統(tǒng)計圖以及樣本數(shù)量得出喜歡廣場舞的人數(shù);(3)利用“劃龍舟”人數(shù)在樣本中所占比例得出“劃龍舟”所在扇形的圓心角的度數(shù);(4)利用樹狀圖法列舉出所有的可能進(jìn)而得出概率.【詳解】(1)這次參與調(diào)查的村民人數(shù)為:24÷20%=120(人);故答案為:120;(2)喜歡廣場舞的人數(shù)為:120﹣24﹣15﹣30﹣9=42(人),如圖所示:;(3)扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù)為:30120(4)如圖所示:,一共有12種可能,恰好選中“花鼓戲、劃龍舟”這兩個項目的有2種可能,故恰好選中“花鼓戲、劃龍舟”這兩個項目的概率為:16【點睛】此題主要考查了扇形統(tǒng)計圖以及條形統(tǒng)計圖的應(yīng)用和樹狀圖法求概率,正確列舉出所有可能是解題關(guān)鍵.19、(1)50,43.2°,補(bǔ)圖見解析;(2).【解析】

(1)由A景點的人數(shù)以及百分比進(jìn)行計算即可得到該市周邊景點共接待游客數(shù);再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計算即可;根據(jù)B景點接待游客數(shù)補(bǔ)全條形統(tǒng)計圖;

(2)根據(jù)甲、乙兩個旅行團(tuán)在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據(jù)概率公式進(jìn)行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市景點共接待游客數(shù)為:15÷30%=50(萬人),

E景點所對應(yīng)的圓心角的度數(shù)是:B景點人數(shù)為:50×24%=12(萬人),

補(bǔ)全條形統(tǒng)計圖如下:

故答案是:50,43.2o.

(2)畫樹狀圖可得:

∵共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時選擇去同一個景點的結(jié)果有3種,

∴同時選擇去同一個景點的概率=.20、(1)見解析(2)圖中陰影部分的面積為π.【解析】

(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.21、(1)0.3,45;(2)108°;(3).【解析】

(1)首先根據(jù)A組頻數(shù)及其頻率可得總?cè)藬?shù),再利用頻數(shù)、頻率之間的關(guān)系求得a、b;(2)B組的頻率乘以360°即可求得答案;(2)畫樹形圖后即可將所有情況全部列舉出來,從而求得恰好抽中者兩人的概率;【詳解】(1)本次調(diào)查的總?cè)藬?shù)為17÷0.17=100(人),則a==0.3,b=100×0.45=45(人).故答案為0.3,45;(2)360°×0.3=108°.答:扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角為108°.(3)將同一班級的甲、乙學(xué)生記為A、B,另外兩學(xué)生記為C、D,畫樹形圖得:∵共有12種等可能的情況,甲、乙兩名同學(xué)都被選中的情況有2種,∴甲、乙兩名同學(xué)都被選中的概率為=.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論