版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
陜西省三年中考數(shù)學真題——中考數(shù)學試題分類匯總圖形的變化一.選擇題(共6小題)1.(2023?陜西)陜西飲食文化遠流長,“老碗面”是陜西地方特色美食之一.圖②是從正面看到的一個“老碗”(圖①)的形狀示意圖.AB是⊙O的一部分,D是AB的中點,連接OD,與弦AB交于點C,連接OA,OB.已知AB=24cm,碗深CD=8cm,則⊙O的半徑OA為()A.13cm B.16cm C.17cm D.26cm答案:A2.(2022?陜西)如圖,AD是△ABC的高.若BD=2CD=6,tanC=2,則邊AB的長為()A.32 B.35 C.62 D.37答案:C3.(2022?陜西)如圖,AD是△ABC中∠BAC的平分線,DE⊥AB于點E,DF⊥AC交AC于點F.S△ABC=9,DE=2,AB=4,則AC長是()A.4 B.3 C.6 D.5答案:D4.(2021?陜西)如圖,在矩形ABCD中,AB=4,BC=6,O是矩形的對稱中心,點E、F分別在邊AD、BC上,連接OE、OF,若AE=BF=2,則OE+OF的值為()A.22 B.52 C.5 D.25答案:D5.(2021?陜西)下列各選項中,兩個三角形成軸對稱的是()A. B. C. D.答案:A6.(2021?陜西)下列圖形中,是軸對稱圖形的是()A. B. C. D.答案:B二.填空題(共2小題)7.(2022?陜西)在20世紀70年代,我國著名數(shù)學家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,在全國大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所作EF將矩形窗框ABCD分為上下兩部分,其中E為邊AB的黃金分割點,即BE2=AE?AB.已知AB為2米,則線段BE的長為(﹣1+5)答案:(﹣1+58.(2022?陜西)如圖,在菱形ABCD中,AB=4,BD=7.若M、N分別是邊AD、BC上的動點,且AM=BN,作ME⊥BD,NF⊥BD,垂足分別為E、F,則ME+NF的值為152答案:152三.解答題(共7小題)9.(2023?陜西)一天晚上,小明和爸爸帶著測角儀和皮尺去公園測量一景觀燈(燈桿底部不可到達)的高AB.如圖所示,當小明爸爸站在點D處時,他在該景觀燈照射下的影子長為DF,測得DF=2.4m;當小明站在爸爸影子的頂端F處時,測得點A的仰角α為26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距離EF=1.6m,點F、D、B在同一條直線上,EF⊥FB,CD⊥FB,AB⊥FB.求該景觀燈的高AB.(參考數(shù)據(jù):sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)答案:該景觀燈的高AB約為4.8m.解:過點E作EH⊥AB,垂足為H,由題意得:EH=FB,EF=BH=1.6m,設EH=FB=xm,在Rt△AEH中,∠AEH=26.6°,∴AH=EH?tan26.6°≈0.5x(m),∴AB=AH+BH=(0.5x+1.6)m,∵CD⊥FB,AB⊥FB,∴∠CDF=∠ABF=90°,∵∠CFD=∠AFB,∴△CDF∽△ABF,∴CDAB∴1.8AB∴AB=34∴34x=0.5x解得:x=6.4,∴AB=34x=4.8(∴該景觀燈的高AB約為4.8m.10.(2022?陜西)如圖,AB是⊙O的直徑,AM是⊙O的切線,AC、CD是⊙O的弦,且CD⊥AB,垂足為E,連接BD并延長,交AM于點P.(1)求證:∠CAB=∠APB;(2)若⊙O的半徑r=5,AC=8,求線段PD的長.答案:(1)見解答過程;(2)323(1)證明:∵AM是⊙O的切線,∴∠BAM=90°,∵∠CEA=90°,∴AM∥CD,∴∠CDB=∠APB,∵∠CAB=∠CDB,∴∠CAB=∠APB.(2)解:如圖,連接AD,∵AB是直徑,∴∠CDB+∠ADC=90°,∵∠CAB+∠C=90°,∠CDB=∠CAB,∴∠ADC=∠C,∴AD=AC=8,∵AB=10,∴BD=6,∵∠BAD+∠DAP=90°,∠PAD+∠APD=90°,∴∠APB=∠DAB,∵∠BDA=∠BAP∴△ADB∽△PAB,∴ABPB∴PB=AB∴DP=503-故答案為:32311.(2022?陜西)小明和小華利用陽光下的影子來測量一建筑物頂部旗桿的高.如圖所示,在某一時刻,他們在陽光下,分別測得該建筑物OB的影長OC為16米,OA的影長OD為20米,小明的影長FG為2.4米,其中O、C、D、F、G五點在同一直線上,A、B、O三點在同一直線上,且AO⊥OD,EF⊥FG.已知小明的身高EF為1.8米,求旗桿的高AB.答案:3米.解析:解:解法一:∵AD∥EG,∴∠ADO=∠EGF,∵∠AOD=∠EFG=90°,∴△AOD∽△EFG,∴AOEF=OD∴AO=15,∵AD∥BC,∴△BOC∽△AOD,∴BOAO=OC∴BO=12,∴AB=AO﹣BO=15﹣12=3(米);解法二:如圖,過點C作CM⊥OD于C,交AD于M,∵△EGF∽△MDC,∴EFFG=CMDC∴CM=3,即AB=CM=3(米),答:旗桿的高AB是3米.12.(2022?陜西)端午假期,小明和小昊與家人到一山莊度假.閑暇時,他們想利用所學數(shù)學知識測量所住樓前小河的寬.如圖所示,他們先在六層房間窗臺點F處,測得河岸點A處的俯角∠1的度數(shù),然后來到四層房間窗臺點E處,測得河對岸點B處的俯角∠2的度數(shù)(AB與河岸垂直),并且發(fā)現(xiàn)∠1與∠2正好互余.其中O,E,F(xiàn)三點在同一直線上,O,A,B三點在同一直線上,OF⊥OA.已知OE=15米,OF=21.6米,OA=16米,求河寬AB.答案:河寬AB為4.25米.解:∵∠1=∠FAO,∠2=∠EBO,∠1+∠2=90°,∴∠FAO+∠EBO=90°,∵OF⊥OA,∴∠O=90°,∴∠FAO+∠AFO=90°,∴∠EBO=∠AFO,∵∠O=∠O,∴△EBO∽△AFO,∴OEOA∵OE=15米,OF=21.6米,OA=16米,∴1516解得OB=20.25,∴AB=OB﹣OA=20.25﹣16=4.25(米),答:河寬AB為4.25米.13.(2022?陜西)如圖,△ABC的頂點坐標分別為A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).將△ABC平移后得到△A'B'C',且點A的對應點是A'(2,3),點B、C的對應點分別是B'、C'.(1)點A、A'之間的距離是4;(2)請在圖中畫出△A'B'C'.答案:(1)4.(2)作圖見解析.解:(1)∵A(﹣2,3),A'(2,3),∴點A、A'之間的距離是2﹣(﹣2)=4,故答案為:4;(2)如圖所示,△A'B'C'即為所求.14.(2021?陜西)一座吊橋的鋼索立柱AD兩側(cè)各有若干條斜拉的鋼索,大致如圖所示.小明和小亮想用測量知識測較長鋼索AB的長度.他們測得∠ABD為30°,由于B、D兩點間的距離不易測得,通過探究和測量,發(fā)現(xiàn)∠ACD恰好為45°,點B與點C之間的距離約為16m.已知B、C、D共線,AD⊥BD.求鋼索AB的長度.(結(jié)果保留根號)答案:見試題解答內(nèi)容解:在△ADC中,設AD=xm,∵AD⊥BD,∠ACD=45°,∴CD=AD=xm,在△ADB中,AD⊥BD,∠ABD=30°,∴AD=BD?tan30°,即x=33(16+x)解得:x=(83+8)m∴AB=2AD=2×(83+8)=(163+16)∴鋼索AB的長度為(163+16)m15.(2021?陜西)小宸想利用測量知識測算湖中小山的高度.他站在湖邊看臺上,清晰地看到小山倒映在平靜的湖水中,如圖所示,他在點O處測得小山頂端的仰角為45°,小山頂端A在水中倒影A′的俯角為60°.已知:點O到湖面的距離OD=3m,OD⊥DB,AB⊥DB,A、B、A′三點共線,A'B=AB,求小山的高度AB.(光線的折
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年瓷磚供應合同協(xié)議模板
- 《客戶投訴實務》課件
- 2024三方聯(lián)合開發(fā)餐飲配送電商平臺合同3篇
- 2024年無財產(chǎn)離婚協(xié)議書起草與房產(chǎn)分割協(xié)議合同3篇
- 2025礦山承包合同書范文
- 2025設備租賃合同大全
- 2024年度汽車牌照轉(zhuǎn)讓及環(huán)保節(jié)能服務合同樣本3篇
- 2025轉(zhuǎn)讓經(jīng)營合同
- 2024年度農(nóng)產(chǎn)品采購與綠色食品開發(fā)合同2篇
- 2024年校園講師臨時聘用合同
- 2024年病理醫(yī)師三基考試試題
- 校園食品安全知識競賽考試題庫(200多題)
- 抖音火花合同電子版獲取教程
- DZ∕T 0323-2018 硅灰石、透輝石、透閃石、長石礦產(chǎn)地質(zhì)勘查規(guī)范(附修改單)(正式版)
- 電影賞析綠皮書課件(內(nèi)容詳細)
- GB/T 43969-2024智能語音控制器通用安全技術要求
- 在線網(wǎng)課知慧《大學生極簡經(jīng)濟學(山石化)》單元測試考核答案
- 中藥房整改計劃方案
- 2024年-新生兒復蘇參考課件
- 西方政治思想的歷史發(fā)展脈絡
- 2024年湖南高速鐵路職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
評論
0/150
提交評論