版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濟(jì)南市章丘區(qū)章丘市第四中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面2.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.23.已知集合,則()A. B.C. D.4.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.5.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.6.已知i是虛數(shù)單位,則1+iiA.-12+32i7.已知數(shù)列的通項(xiàng)公式是,則()A.0 B.55 C.66 D.788.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.9.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對(duì)稱軸C.點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心D.將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象10.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.11.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍B.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍C.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍12.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知非零向量的夾角為,且,則______.14.展開式中項(xiàng)的系數(shù)是__________15.某高校開展安全教育活動(dòng),安排6名老師到4個(gè)班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個(gè)班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.16.滿足約束條件的目標(biāo)函數(shù)的最小值是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,內(nèi)角所對(duì)的邊分別為,若,,且.(1)求的值;(2)求的面積.18.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實(shí)數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.19.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.20.(12分)在中,角的對(duì)邊分別為,且滿足.(Ⅰ)求角的大小;(Ⅱ)若的面積為,,求和的值.21.(12分)數(shù)列滿足,是與的等差中項(xiàng).(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且,(,且)(1)求數(shù)列的通項(xiàng)公式;(2)證明:當(dāng)時(shí),
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.2、B【解析】由題意或4,則,故選B.3、B【解析】
先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.4、C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡(jiǎn)單題.5、A【解析】由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.6、D【解析】
利用復(fù)數(shù)的運(yùn)算法則即可化簡(jiǎn)得出結(jié)果【詳解】1+i故選D【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。7、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計(jì)算出的值,可進(jìn)一步得到數(shù)列的通項(xiàng)公式,然后代入轉(zhuǎn)化計(jì)算,再根據(jù)等差數(shù)列求和公式計(jì)算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),所以當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,所以故選:D【點(diǎn)睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.8、B【解析】
將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.9、D【解析】
利用輔助角公式化簡(jiǎn)函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對(duì)稱軸,錯(cuò)誤C選項(xiàng),,不是對(duì)稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對(duì)稱軸,對(duì)稱中心,平移,意在考查學(xué)生對(duì)于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡(jiǎn)三角函數(shù)是解題的關(guān)鍵.10、D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.11、D【解析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.12、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)椋裕?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡(jiǎn)求解即可,屬于基礎(chǔ)題.14、-20【解析】
根據(jù)二項(xiàng)式定理的通項(xiàng)公式,再分情況考慮即可求解.【詳解】解:展開式中項(xiàng)的系數(shù):二項(xiàng)式由通項(xiàng)公式當(dāng)時(shí),項(xiàng)的系數(shù)是,當(dāng)時(shí),項(xiàng)的系數(shù)是,故的系數(shù)為;故答案為:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.15、156【解析】
先考慮每班安排的老師人數(shù),然后計(jì)算出對(duì)應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級(jí)的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個(gè)班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個(gè)班,共有種,所以種.故答案為:.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,難度一般.對(duì)于分組的問題,首先確定每組的數(shù)量,對(duì)于其中特殊元素,可通過“正難則反”的思想進(jìn)行分析.16、-2【解析】
可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡(jiǎn)可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.18、(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對(duì)值符號(hào),可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因?yàn)?,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對(duì)值符號(hào),可得所以,所以,解得,所以實(shí)數(shù)的取值范圍為.(2)由(1)知,,所以.因?yàn)?,所以要證,只需證,即證,即證.因?yàn)?,所以只需證,因?yàn)?,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設(shè):證明:x+y-2xy==令,∴原式====當(dāng)時(shí),19、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對(duì)其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說明即可;②由①可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對(duì)求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實(shí)數(shù)的值為.(2)①因?yàn)楹瘮?shù)在定義域上有兩個(gè)極值點(diǎn),且,所以在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根.所以解得.當(dāng)時(shí),若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個(gè)極值點(diǎn),且.所以,實(shí)數(shù)的取值范圍是.②由①可知,是方程的兩個(gè)不等的實(shí)根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當(dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增,所以當(dāng)時(shí),,又,,所以,即,故得證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點(diǎn)個(gè)數(shù)求參數(shù)范圍問題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.20、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運(yùn)用正弦定理和二角和的正弦公式,化簡(jiǎn),即可求出角的大??;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點(diǎn)睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運(yùn)算能力.21、(1)見解析,(2)【解析】
(1)根據(jù)等差中項(xiàng)的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項(xiàng)即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項(xiàng)為:,故.【點(diǎn)睛】考查等差中項(xiàng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 防雷設(shè)施安裝維護(hù)合同三篇
- 化妝品行業(yè)保安工作總結(jié)
- 兒童游樂設(shè)施設(shè)計(jì)美工工作總結(jié)
- 林業(yè)行業(yè)美工的森林保護(hù)
- 風(fēng)險(xiǎn)防范工作總結(jié)
- 【八年級(jí)下冊(cè)地理粵教版】第8章 珠江三角洲 單元測(cè)試
- 本科生畢業(yè)論文答辯記錄表
- 2025屆揚(yáng)州市高三語文(上)1月質(zhì)量調(diào)研試卷及答案解析
- 創(chuàng)新成果知識(shí)產(chǎn)權(quán)合同(2篇)
- DB33T 2188.4-2019 大型賽會(huì)志愿服務(wù)崗位規(guī)范 第4部分:禮賓接待志愿服務(wù)
- 土方開挖及周邊環(huán)境保護(hù)方案
- 2024年安徽省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 2024年度危廢培訓(xùn)完整課件
- 福建師范大學(xué)《教育學(xué)(含教師職業(yè)道德)》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘋果三星專利之爭(zhēng)
- 人教版2024-2025學(xué)年六年級(jí)數(shù)學(xué)上冊(cè)5.4 扇形的面積 同步練習(xí)(附答案解析)
- 《Java程序設(shè)計(jì)應(yīng)用開發(fā)》全套教學(xué)課件
- 學(xué)校食堂菜譜及定價(jià)方案
- 高考英語一輪復(fù)習(xí)英語語法專題復(fù)習(xí):時(shí)態(tài)和語態(tài)課件(共45張)
- 必背知識(shí)點(diǎn)梳理-2024-2025學(xué)年人教版生物七年級(jí)上冊(cè)
- 2024-2030年中國非物質(zhì)文化遺產(chǎn)行業(yè)市場(chǎng)深度分析及競(jìng)爭(zhēng)格局與投資策略研究報(bào)告
評(píng)論
0/150
提交評(píng)論