吉林省吉林市舒蘭市重點達標名校2023-2024學年中考數(shù)學猜題卷含解析_第1頁
吉林省吉林市舒蘭市重點達標名校2023-2024學年中考數(shù)學猜題卷含解析_第2頁
吉林省吉林市舒蘭市重點達標名校2023-2024學年中考數(shù)學猜題卷含解析_第3頁
吉林省吉林市舒蘭市重點達標名校2023-2024學年中考數(shù)學猜題卷含解析_第4頁
吉林省吉林市舒蘭市重點達標名校2023-2024學年中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省吉林市舒蘭市重點達標名校2023-2024學年中考數(shù)學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.2.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°4.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a65.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:16.不等式組中兩個不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.7.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m38.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆9.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.10.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.11.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里12.為了解當?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結(jié)果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數(shù)據(jù)的中位數(shù)是﹣1,則下列結(jié)論錯誤的是()A.方差是8 B.極差是9 C.眾數(shù)是﹣1 D.平均數(shù)是﹣1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于函數(shù),若x>2,則y______3(填“>”或“<”).14.分解因式:__________.15.已知x1,x2是方程x2+6x+3=0的兩實數(shù)根,則的值為_____.16.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.17.如圖,已知矩形ABCD中,點E是BC邊上的點,BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號都填上)18.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據(jù)該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結(jié)果即可).20.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.21.(6分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.22.(8分)如圖所示,PB是⊙O的切線,B為切點,圓心O在PC上,∠P=30°,D為弧BC的中點.(1)求證:PB=BC;(2)試判斷四邊形BOCD的形狀,并說明理由.23.(8分)閱讀與應用:閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當a=b時取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當即時,函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當x=__________時,周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當x=__________時,的最小值為__________.問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.1.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))24.(10分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:a=%,并補全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?25.(10分)瑞安市曹村鎮(zhèn)“八百年燈會”成為溫州“申遺”的寶貴項目.某公司生產(chǎn)了一種紀念花燈,每件紀念花燈制造成本為18元.設銷售單價x(元),每日銷售量y(件)每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關(guān)系,其幾組對應量如下表所示:(元)19202130(件)62605840(1)根據(jù)表中數(shù)據(jù)的規(guī)律,分別寫出毎日銷售量y(件),每日的利潤w(元)關(guān)于銷售單價x(元)之間的函數(shù)表達式.(利潤=(銷售單價﹣成本單價)×銷售件數(shù)).當銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?根據(jù)物價局規(guī)定,這種紀念品的銷售單價不得高于32元,如果公司要獲得每日不低于350元的利潤,那么制造這種紀念花燈每日的最低制造成本需要多少元?26.(12分)(1)解方程組(2)若點是平面直角坐標系中坐標軸上的點,(1)中的解分別為點的橫、縱坐標,求的最小值及取得最小值時點的坐標.27.(12分)計算:(-1)-1-++|1-3|

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.2、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、A【解析】

直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.4、D【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D5、B【解析】

可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.6、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.7、C【解析】

根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.8、B【解析】試題解析:由題意得,解得:.故選B.9、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.10、B【解析】

解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質(zhì).11、D【解析】

根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關(guān)鍵.12、A【解析】根據(jù)題意可知x=-1,

平均數(shù)=(-6-1-1-1+2+1)÷6=-1,

∵數(shù)據(jù)-1出現(xiàn)兩次最多,

∴眾數(shù)為-1,

極差=1-(-6)=2,

方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.

故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、<【解析】

根據(jù)反比例函數(shù)的性質(zhì)即可解答.【詳解】當x=2時,,∵k=6時,∴y隨x的增大而減小∴x>2時,y<3故答案為:<【點睛】此題主要考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵在于利用反比例函數(shù)圖象上點的坐標特點判斷函數(shù)值的取值范圍.14、3(m-1)2【解析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案為:3(m-1)2點睛:因式分解是把一個多項式化為幾個因式積的形式.根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解).15、1.【解析】試題分析:∵,是方程的兩實數(shù)根,∴由韋達定理,知,,∴===1,即的值是1.故答案為1.考點:根與系數(shù)的關(guān)系.16、(2,1)【解析】

由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,

∴C′(2,1),

故答案為:(2,1)【點睛】本題考查了矩形的性質(zhì),坐標與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.17、①②【解析】

只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設DF平分∠ADC,則△ADF是等腰直角三角形,這個顯然不可能,故③錯誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯誤,故答案為①②.【點睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.18、17【解析】

根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權(quán)平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權(quán)平均數(shù)的計算方法,屬于簡單題,計算25元所占權(quán)比是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.20、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】

(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側(cè),根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結(jié)合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質(zhì)等知識點.解(1)的關(guān)鍵是掌握待定系數(shù)法,解(2)的關(guān)鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關(guān)鍵是證明△BNP≌△PMQ.21、(1)直線的表達式為,雙曲線的表達方式為;(2)點P的坐標為或【解析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據(jù)直線解析式求得點A坐標,由S△ACP=AC?|yP|=4求得點P的縱坐標,繼而可得答案.詳解:(1)∵直線與雙曲線()都經(jīng)過點B(-1,4),,,∴直線的表達式為,雙曲線的表達方式為.(2)由題意,得點C的坐標為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標為或.點睛:本題主要考查反比例函數(shù)和一次函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積是解題的關(guān)鍵.22、(1)見解析;(2)菱形【解析】試題分析:(1)由切線的性質(zhì)得到∠OBP=90°,進而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角對等邊即可得到結(jié)論;(2)由對角線互相垂直平分的四邊形是菱形證明即可.試題解析:證明:(1)∵PB是⊙O的切線,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;(2)連接OD交BC于點M.∵D是弧BC的中點,∴OD垂直平分BC.在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四邊形BOCD是菱形.23、問題1:28問題2:38問題3:設學校學生人數(shù)為x人,生均投入為y元,依題意得:,因為x>0,所以,當即x=800時,y取最小值2.答:當學校學生人數(shù)為800人時,該校每天生均投入最低,最低費用是2元.【解析】試題分析:問題1:當時,周長有最小值,求x的值和周長最小值;問題2:變形,由當x+1=時,的最小值,求出x值和的最小值;問題3:設學校學生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費用÷學生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.試題解析:問題1:∵當(x>0)時,周長有最小值,∴x=2,∴當x=2時,有最小值為=3.即當x=2時,周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當x+1=(x>-1)時,的最小值,∴x=3,∴x=3時,有最小值為3+3=8,即當x=3時,的最小值為8;問題3:設學校學生人數(shù)為x人,則生均投入y元,依題意得,因為x>0,所以,當即x=800時,y取最小值2.答:當學校學生人數(shù)為800時,該校每天生均投入最低,最低費用是2元.24、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論