




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省瀾滄縣第一中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.42.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.把函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數(shù)是()A.1 B.2 C.3 D.44.已知銳角滿足則()A. B. C. D.5.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立6.已知雙曲線的左焦點為,直線經(jīng)過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.7.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②8.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱11.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點在直線上,則的值等于______________.14.已知正數(shù)a,b滿足a+b=1,則的最小值等于__________,此時a=____________.15.設(shè)f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.設(shè)的內(nèi)角的對邊分別為,,.若,,,則_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)我國在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質(zhì)的脈沖星候選體,其中有93顆已被確認為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀60年代天文學(xué)的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉(zhuǎn)的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉(zhuǎn)周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構(gòu)觀測并統(tǒng)計了93顆已被確認為新發(fā)現(xiàn)的脈沖星的自轉(zhuǎn)周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉(zhuǎn)周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉(zhuǎn)周期的平均值.18.(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實根為.令若存在,,,使得,證明:.19.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.20.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:22.(10分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎(chǔ)題.2、B【解析】
由,可得,解出即可判斷出結(jié)論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.3、C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當時,,所以是函數(shù)的一條對稱軸,②正確;當時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C【點睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗法判斷余弦型函數(shù)的對稱軸和對稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.4、C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運算能力,是一道基礎(chǔ)題.5、C【解析】
A:否命題既否條件又否結(jié)論,故A錯.B:由正弦定理和邊角關(guān)系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎(chǔ)題.6、A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關(guān)系進行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關(guān)系和已知條件即可求解,屬于一般性題目.7、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.8、A【解析】
先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.9、B【解析】
化簡復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對應(yīng)點所在象限,即可求得答案.【詳解】對應(yīng)的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.10、C【解析】
依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.11、C【解析】
根據(jù)充分條件和必要條件的定義結(jié)合對數(shù)的運算進行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.12、D【解析】
根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數(shù)列的計算,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.【點睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.14、3【解析】
根據(jù)題意,分析可得,由基本不等式的性質(zhì)可得最小值,進而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據(jù)題意,正數(shù)a、b滿足,則,當且僅當時,等號成立,故的最小值為3,此時.故答案為:3;.【點睛】本題考查基本不等式及其應(yīng)用,考查轉(zhuǎn)化與化歸能力,屬于基礎(chǔ)題.15、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導(dǎo)數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導(dǎo)數(shù)求面積的最值問題,意在考查學(xué)生的計算能力和應(yīng)用能力.16、或【解析】試題分析:由,則可運用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點:運用正弦定理解三角形.(注意多解的情況判斷)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)79顆;(2)5.5秒.【解析】
(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉(zhuǎn)周期在2至10秒的頻率,從而得到頻數(shù);(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉(zhuǎn)周期在2至10秒的大約有(顆).(2)新發(fā)現(xiàn)的脈沖星自轉(zhuǎn)周期平均值為(秒).故新發(fā)現(xiàn)的脈沖星自轉(zhuǎn)周期平均值為5.5秒.【點睛】本題考查頻率分布直方圖的應(yīng)用,涉及到平均數(shù)的估計值等知識,是一道容易題.18、(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當時,,,因而在上單調(diào)遞增.當時,,,因而在上單調(diào)遞減.因為,所以,要證.即要證.記,.因為,所以,則..設(shè),,當時,.時,,故.且,故,因為,所以.因此,即在上單調(diào)遞增.所以,即.故得證.【點睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.19、(1).(2).【解析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設(shè),0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中介合作協(xié)議書范本
- 微生物檢驗質(zhì)量控制試題及答案
- 一雙兒女夫妻離婚協(xié)議書
- 2025年證券從業(yè)資格考試全面總結(jié)試題及答案
- 品牌發(fā)展中的法律合規(guī)性計劃
- 采購與供應(yīng)鏈協(xié)同法律法規(guī)重點基礎(chǔ)知識點
- 微生物檢驗中的技術(shù)創(chuàng)新與應(yīng)用實例試題及答案
- 項目管理考試中的評估標準與方法試題及答案
- 提高注冊會計師考試綜合能力試題及答案
- 特許金融分析師考試重要理論探討試題及答案
- 神經(jīng)網(wǎng)絡(luò)-周志華西瓜書
- 加油站員工技能培訓(xùn)體系
- 混凝土外加劑試驗原始記錄
- 市政管網(wǎng)危大工程專項方案
- 2024年新鄉(xiāng)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 銀行業(yè)審計培訓(xùn)課件
- 2024年新改版蘇教版六年級下冊科學(xué)全冊復(fù)習(xí)資料
- 物業(yè)電梯安全檢查報告
- (新版)安全閥安裝、檢修及校驗培訓(xùn)課件
- 殘疾消防培訓(xùn)課件內(nèi)容
- 個人專門制作的風(fēng)機功率計算公式及方法
評論
0/150
提交評論