版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
Combustionmodellingsolutionsforalternativefuels
MOBEXWebinar
MichaelRie?,April2024
Content
Introductionandstatuscombustionmodeldevelopmentforalternativefuels
InsightIAV′shydrogencombustionmodel
ApplicationexamplesforIAV′sH2-ICEcombustionmodel
Conclusionandoutlook
Introductionandstatuscombustionmodeldevelopmentfor
alternativefuels
Ventilhub
DetailedConceptDesign
ConceptEvaluation
1654
495
2000
4000
3000
3500
07
4000
4500
4000
3500
3000
2500
2000
1500
4000
3500
3000
2500
2000
1500
1000
0D/1D
3000
3000
2500
2500
2ndVirtualPrototypeLayout
540。KW720
90180270
360450
Col1
3
Combustionmodellingsolutionsforalternativefuels
OverarchingICEdevelopmentprocess
Pre-ConceptLayout
BasedonTargetsand/or
SystemLevel
outputPowertrain
ComponentLevel
Synthesis
CombustionProcess
Injector/Port…
FuelEffects
Knocking&
RawEmissions
4500
4500
4500
Simulation
Submodels
SubsystemLevel
Charging&
In-Cylinder
Flow
EAT
developedbyIAV
CombustionDesignwith
HighFidelity3DCFD
GasExchange
&Valvetrain
1stVirtualPrototypeLayout
4IAV04/2024TD-F3mr?Status:draft,public
Combustionmodellingsolutionsforalternativefuels
Overview/selectedfuelsforICEapplications
Proprietarymodelsavailable(1D)
Developmentofmodelsongoing
Usingcommercialmodels
5IAV04/2024TD-F3mr?Status:draft,public
SI
homogeneous
SI
stratified
CI
DFhomogeneous
CI
DFstratified
CI
DFdoublediffusive
Available/validated
Notyet
Available/validated
Notyet
Notyet
Available/validationongoing
Notyet
Workinprogress
Notyet
Notyet
Workinprogress
Notyet
Planned
Notyet
Notyet
CombustionmodellingsolutionsforalternativefuelsStatusandnextsteps
H2
CH3OH
NH3
BasicInjectionSystem
IgnitionSystem
AdvancedInjectionSystem
PilotfuelinjectionSystem
6IAV04/2024TD-F3mr?Status:draft,public
InsightIAV′shydrogencombustionmodel
Validation/
Calibration
Parametrization
(burnrate,in/expressure)
Inalldevelopmentlevels,IAVaimsatemployingownphenomenologicalmodelsthatenablepredictive
simulationofsystem
behavior,e.g.
?Ignition
?Knock
?Flamespeed/burnrate
?Engine–outemissions
?Tailpipeemissions
Validationofassumptionsandsimulationresultson
alllevels(specific
componenttestingorin-
situexperiments)ispartofIAV′sdevelopmentprocess
SystemLevel
SubsystemLevel
Virtual
Highfidelity3DCFD
Drivingdesigniterationsforcombustionimprovement
1DSimulation
Validation
Validation
SingleCylinderEngine
Experimental
CombustionmodellingsolutionsforalternativefuelsDevelopmentprocessforH2ICE
ComponentLevel
Initial0D/1D/3DCFD
IAVH2KnockPrediction
IAVH2LaminarFlameSpeedModel
EOemissionsmodel
Validation/Calibration
H2EngineDynos
660kW/pH2≤100barpressure
bomb,RCM,vessel
combustion
spray
RapidPrototypingbymeansof3Dprint,e.g.pistonsandcylinderheads
8IAV04/2024TD-F3mr?Status:draft,public
Combustionmodellingsolutionsforalternativefuels
IAV’sPhenomenologicalHydrogenSICombustionModel
?IAV’sH2combustionmodeldevelopedbasedondetailedchemicalkineticssimulation
?IAV’sphenomenologicalH2combustionmodelincludesdedicatedsubmodelstoconsidermostfuel-specificeffects
1.Laminarflamespeedmodel
Dedicatedapproachforhydrogenlaminarflamespeedsdevelopedbasedondetailedreactionkineticsimulationsandconsideringallrelevantboundaryconditions
(Lambdaupto4,EGRratesofupto50%,pressureofupto250barandentirerelevantunburntgastemperaturerange)
2.Auto-ignitionmodelforthepredictionofknock,capableofconsideringtheeffectofmixtureinhomogeneities
Basedonthewidely-usedLivengood-Wuintegralrepresentingthedegreeofchemicalreactionsintheunburnedmixtureresultinginknock:
C
;A,B,C=f(T,p,λ,EGR)
Parametersfittedbasedonignitiondelaytimesimulationswithdetailedreactionkinetics
Theignitiondelaytimesτarecalculatedwithahydrogen-dedicatedArrhenius-type
equation:
t=te
1=?
t=0
dt
τ=A?e
1000T
B
IAV’sH2combustionmodeliswidelypublished,e.g.Rezaei,R.,Hayduk,C.,Fandakov,A.,Rie?,M.etal.,“NumericalandExperimentalInvestigationsofHydrogenCombustionforHeavy-DutyApplications,”SAETechnicalPaper2021-01-0522
9IAV04/2024TD-F3mr?Status:draft,public
CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV′spremixedH2combustionmodel
FocusofIAV′sproprietaryH2combustionmodel
?H2laminarflamevelocityunderallrelevantboundaryconditions(T,p,lambda,EGR)withpcylupto250bar,lambdaupto4,EGRupto50%
?Asemi-empiricmodeltopredictresidualH2
?Akineticmodeltopredictauto-ignitionandengineknockwithboundariessimilartolaminarflamespeed
ValidationbasisonaperfectlypremixedH2-ICE
?Lambdafrom1.6…3.6,cooledEGRfrom0…30%
?Indicatedmeaneffectivepressurefrom5-22bar
?Enginespeedfrom900-1900rpm
10IAV04/2024TD-F3mr?Status:draft,public
SimulatedSimulated
SimulatedSimulated
SimulatedSimulated
SimulatedSimulated
Prediction:Auto-IgnitionModel
3
bar
I
EP720
±5%in
bar
M
5%
T
otalEGR
Rate±5
%(relati
ve)in%
MaximumPressure±5%inbar
16
14
12
10
8
4。CA
MF
10-MFB7
BurnDu5±3。CA
rationin。CA
PredictionofAuto-Ignition
5。CA
SparkTiming±3。CAin。CAaFTDC
CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV′spremixedH2combustionmodel
PredictionofCombustionCharacteristics
Measured
Measured
0
.3
λ±5%
in-
Measured
5
g/kWh
BSF
C±5
%in
g/kW
h
Measured
a
20br
Measured
Measured
3
。CA
M
FB50
±3。
CAin
。CA
aFTD
C
Measured
6
4
2
0
B
Measured
Crank
Anglea
tAuto-I
gnition
±1。CAi
n。CA
0246810121416
Simulation:ReactionKineticMechanism
IAV’scustomcombustionmodelcanaccuratelypredictallrelevanthydrogencombustioncharacteristicsaswellasauto-ignitionintheunburntmass
11IAV04/2024TD-F3mr?Status:draft,public
Combustionmodellingsolutionsforalternativefuels
λ:2.0
ValidationresultsofIAV′spremixedH2combustionmodel
1316rpm/20barIMEP
Ext.EGR:0%
PFI-perfectlyhomogeneousmixture
RobustH2combustionwithgoodrunningstabilityachievedatlambda2.0;knocklimitfoundat3。CA
12IAV04/2024TD-F3mr?Status:draft,public
KnockPropensityIntegral/1=te
?Validationofpredictedcombustionphasing(MFB50)attheknocklimitwithaconstantcalibrationparameter
value
?Asatisfactoryresultisachievedwithamax.MFB50-deviationof2°CA(OP6)
CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV′spremixedH2combustionmodel-autoignition
MFB50SensitivityAnalysisonKnockPropensity@1316rpm/20barIMEP
MFB50~2°CA
ValidationofpredictedMFB50-points
?Generaleffectofcombustionphasingonknockpropensityisaccuratelyrepresentedbythephenomenologicalmodel
?Theknocksimulationmodelreliesonthecombustion
characteristicspredictedbyIAV’shydrogencombustionmodel
13IAV04/2024TD-F3mr?Status:draft,public
CombustionmodellingsolutionsforalternativefuelsChallengeswithH2duetoinhomogeneities
?SufficientmixturepreparationisthemostcrucialissuewithH2-ICE
?BeneficialdiffusionbehaviourofH2comparedtootherfuelsplayaratherminorroleduetotherelevanttimescales.
?Insufficienthomogeneitydeliverspoorcombustion-andemissionsperformance.
?H2featuresfastcombustionevenindiluted/leanconditions
?Whilethisfastcombustionisbeneficialforefficiencyandcombustionstability,itcreateshightemperature
?Minimumgloballambdainthemapshallbearound~2withonlysmalllocaldeviations(s(λ)<0.1)inordertoavoidNOxcreation
?FasterH2combustionleadstoincreasedpcylandTcylcomparedtogasoline
?Ultimately,highpandTleadtodrasticallyreducedignitiondelayauto-ignition
?Dilution(air/EGR)mitigatesthisissueandenableoperationathigherspecpower
?Poorhomogeneityandrichspotsneedtobeavoided(PI,Knock,Backfire)
14IAV04/2024TD-F3mr?Status:draft,public
CFDResultLambda
?Injection
?Flow
?Geometry
?Timing
?IAVphenomenologicalcombustionmodel:
?Gasexchange,charging
?Strategy/optimization
lean
rich
-3D
IAV1DLink
Input:CFDresultor“worst
case”assumption
CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignitionprediction
Maindriverforknockandpre-ignitionphenomenaarelocalinhomogeneitiesconcerningtemperatureandlambdadistribution
1DSimulation
hot
likerichzonesandinfluenceof
IAV1Dauto-ignitionmodeliscapabletotakelocalinhomogeneities
plug,
spots(spark
exhaustvalve)intoaccount:
Combustioncalculationwitha“global”enginelambda(two-zonecalculationwiththeentrainmentmodel)
Auto-ignitioncalculationwithLivengood-Wuintegralrepresentingthedegreeofchemicalreactions(pre-
reactions)intheunburnedzone:
Auto-Ignitionpredictionbasedonalocalrichlambdazone
Auto-Ignitionpredictionconsideringalocaltemperatureofahotspot
IAVphenomenological1Dcombustionmodeliscapabletoconsidertolocalinhomogeneitiesoflambdaand
temperatureforauto-ignitionandknockprediction
15IAV04/2024TD-F3mr?Status:draft,public
CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignition
?IAV’sproprietaryhydrogencombustionmodel
packageenablesthepredictive0D/1Dsimulationofhydrogencombustion,knockpropensityand
NOxemissions
?H2-modelscanbeusedforbothsteady-stateandtransientsimulations
?DedicatedGUIformodelparametrizationthatcanbeembeddedintoanyenginemodel
?FullyintegratedresultoutputinGT-POST
?H2-modelscompatiblewithallGT-POWER
versionsafterV2016andavailablefordifferentoperatingsystems
16IAV04/2024TD-F3mr?Status:draft,public
Auto-ignat0%MFB(-3°CA)
Pre-ignition
Auto-ignat0%MFB(0°CA)
Auto-ignat10%MFB(5°CA)
Auto-ignat35%MFB
Auto-ignat65%MFB
Auto-ignition
Noauto-ignition
limit
Combustionmodellingsolutionsforalternativefuels
SensitivityonAuto-IgnitionTendency:Tunburned
?Localhotspotsmightbemodeledviatheinfluenceonlocalunburnedtemperature
?Hotspots(e.g.exhaustvalve,sparkplug)arecharacterizedbyanincreasedlocalunburnedmixturetemperature
?Calibrationofmixtureinhomogeneitiesandhotspotsbasedon3DCFDsimulationresults,combiningthehighfidelityof3DCFDsimulationswiththeexcellentbalancebetweeneffortandaccuracytypicalfor0D/1Dapproaches
?Exemplaryvariationoflocaltemperatureatahotspotrepresentingtheauto-
ignitionlocationintheunburntzone
?Hotspotsrepresentedbymarginally
highertemperatures(+2..4%)resultinanincreasedknockpropensity
?Anunburnttemperatureincreaseofjust6%alreadyresultsinamega-knock
(massfractionburnedatauto-ignitionbelow1%)
17IAV04/2024TD-F3mr?Status:draft,public
?ExemplaryvariationoflocalLambdaattheauto-ignitionlocationintheunburntzone
?Increasedauto-ignitionpropensityatlocalrichzones:
?Richerlambdaresultsinanearlierauto-
ignition;retardingtheignitiontimingrequiredtoreduceknocktendency
Combustionmodellingsolutionsforalternativefuels
SensitivityonAuto-IgnitionTendency:λunburned
?IAV’sauto-ignitionmodeliscapableofconsideringtheeffectsoflocalrichzonesand/orhotspots
?Combustioncalculationbasedonacylinder-averagedin-cylinderLambdavalue,asinhomogeneityeffectonburnratenegligibleinmostcases
?Auto-Ignitionpredictionconsideringlocalrichzonesandgastemperatures(e.g.hotspots)basedon3DCFD
coldflowsimulationresults
Auto-ignat68%MFB(22°CA)
Auto-ignat79%MFB(26°CA)
Auto-ignat96%MFB(34°CA)
NoknockingMFB50=
18.6°CAaFTDC
Knocklimit
18IAV04/2024TD-F3mr?Status:draft,public
ApplicationExamplesforIAV′shydrogencombustionmodel
(LP-)DIpostinjectionH2
Boosting/Optimization1DsimulationforH2engines
CombustionmodellingsolutionsforalternativefuelsApplicationExample:H2LPDIwithpost-injection
?IncontrasttoPFIhydrogeninjection,a2nd(LP-)directinjectionoffersanadditionalchancetoincreaseboostwhichinturncanbeusedtoimproveeitherpowerperformanceorreduceNOxemissions
?Theeffectofa2ndlateinjectiononexhaustenthalpyhasbeeninvestigatedbyIAVbothexperimentallyandin1Dsimulation
?Duetotheimpactonengineefficiency,this”solution“mightbeappliedspecificallyintransientoperationonly
Stationaryat1200rpm/14barTransientloadresponseat1200rpm
20IAV04/2024TD-F3mr?Status:draft,public
Combustionmodellingsolutionsforalternativefuels
LPDIwithpost-injection:cylinderpressureanalysis
Stationaryat1200rpm/14bar
w/postINJ(pred.model)w/postINJ(exp.)
?Verygoodagreementbetweenpredictive1DmodelandmeasurementforwardsimulationcapabilityalsoforpostinjectionandimpactonEATsimulation!
21IAV04/2024TD-F3mr?Status:draft,public
ApplicationExamplesforIAV′shydrogencombustionmodel
(LP-)DIpostinjectionH2
Boosting/Optimization1DsimulationforH2engines
engine
Combustionmodellingsolutionsforalternativefuels
TC-matchingformediumdutyLPDIengine
?(LP-DI)engineshaveaverymuchdifferentdemandontheboostingsystemthanPFIengines
?IAV′spredictiveH21Dcombustionmodelallowsanefficientandaccurateoptimizationoftheboostingsystem
HP-stage
LP-stage
23IAV04/2024TD-F3mr?Status:draft,public
MassMultiplierLP-stage
engine
1.35
torque[Nm]
1.30
1.25
1.20
HP-stage
1.15
LP-stage
)
2.
(λ
1.10
1.05
1.00
TC)
(D
Bas
0.95
0.90
0.85
Combustionmodellingsolutionsforalternativefuels
TC-matchingformediumdutyLPDIengine
76
5
De
signa
rea
979
1000
=
rpm05
esize
iesel-
0.850.900.951.001.051.101.151.201.251.301.35
MassMultiplierHP-stage
24IAV04/2024TD-F3mr?Status:draft,public
36.0
MassMultiplierLP-stage
engine
1.35
1.25
765
1.20
HP-stage
0.90
Combustionmodellingsolutionsforalterna
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒樓消防知識培訓課件
- 2024燃料油產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟合作協(xié)議3篇
- 2024樣板房樣板間智能化改造升級合同3篇
- 2024數(shù)碼相機產(chǎn)品研發(fā)與全球市場推廣合同3篇
- 2024架子工班組項目承包協(xié)議樣本版B版
- 中國礦業(yè)大學徐海學院《微生物學基礎》2023-2024學年第一學期期末試卷
- 長沙職業(yè)技術(shù)學院《項目投資與融資》2023-2024學年第一學期期末試卷
- 腫瘤登記知識培訓課件
- 教育培訓行業(yè)安全事故案例分析
- 鐘表設計師職位概述
- 廣東大灣區(qū)2024-2025學年度高一上學期期末統(tǒng)一測試英語試題(無答案)
- 《胃癌靶向治療》課件
- 2024-2025學年遼寧省沈陽市高一上學期1月期末質(zhì)量監(jiān)測數(shù)學試題(含解析)
- 物理(四川)-【八省聯(lián)考】河南、山西、陜西、內(nèi)蒙古、四川、云南、寧夏、青海八省2025年高考綜合改革適應性演練聯(lián)考試題和答案
- 《少兒主持人》課件
- 2025年西藏拉薩市柳梧新區(qū)城市投資建設發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- DB51T 1069-2010 四川泡菜生產(chǎn)規(guī)范
- 斷絕關系協(xié)議書
- 2023-建筑施工技02課件講解
- 2025年部編版一年級語文上冊期末復習計劃
- 2024高考物理一輪復習:觀察電容器的充、放電現(xiàn)象(練習)(學生版+解析)
評論
0/150
提交評論