內(nèi)燃機-替代燃料燃燒模型解決方案-2024-05-技術(shù)資料_第1頁
內(nèi)燃機-替代燃料燃燒模型解決方案-2024-05-技術(shù)資料_第2頁
內(nèi)燃機-替代燃料燃燒模型解決方案-2024-05-技術(shù)資料_第3頁
內(nèi)燃機-替代燃料燃燒模型解決方案-2024-05-技術(shù)資料_第4頁
內(nèi)燃機-替代燃料燃燒模型解決方案-2024-05-技術(shù)資料_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

Combustionmodellingsolutionsforalternativefuels

MOBEXWebinar

MichaelRie?,April2024

Content

Introductionandstatuscombustionmodeldevelopmentforalternativefuels

InsightIAV′shydrogencombustionmodel

ApplicationexamplesforIAV′sH2-ICEcombustionmodel

Conclusionandoutlook

Introductionandstatuscombustionmodeldevelopmentfor

alternativefuels

Ventilhub

DetailedConceptDesign

ConceptEvaluation

1654

495

2000

4000

3000

3500

07

4000

4500

4000

3500

3000

2500

2000

1500

4000

3500

3000

2500

2000

1500

1000

0D/1D

3000

3000

2500

2500

2ndVirtualPrototypeLayout

540。KW720

90180270

360450

Col1

3

Combustionmodellingsolutionsforalternativefuels

OverarchingICEdevelopmentprocess

Pre-ConceptLayout

BasedonTargetsand/or

SystemLevel

outputPowertrain

ComponentLevel

Synthesis

CombustionProcess

Injector/Port…

FuelEffects

Knocking&

RawEmissions

4500

4500

4500

Simulation

Submodels

SubsystemLevel

Charging&

In-Cylinder

Flow

EAT

developedbyIAV

CombustionDesignwith

HighFidelity3DCFD

GasExchange

&Valvetrain

1stVirtualPrototypeLayout

4IAV04/2024TD-F3mr?Status:draft,public

Combustionmodellingsolutionsforalternativefuels

Overview/selectedfuelsforICEapplications

Proprietarymodelsavailable(1D)

Developmentofmodelsongoing

Usingcommercialmodels

5IAV04/2024TD-F3mr?Status:draft,public

SI

homogeneous

SI

stratified

CI

DFhomogeneous

CI

DFstratified

CI

DFdoublediffusive

Available/validated

Notyet

Available/validated

Notyet

Notyet

Available/validationongoing

Notyet

Workinprogress

Notyet

Notyet

Workinprogress

Notyet

Planned

Notyet

Notyet

CombustionmodellingsolutionsforalternativefuelsStatusandnextsteps

H2

CH3OH

NH3

BasicInjectionSystem

IgnitionSystem

AdvancedInjectionSystem

PilotfuelinjectionSystem

6IAV04/2024TD-F3mr?Status:draft,public

InsightIAV′shydrogencombustionmodel

Validation/

Calibration

Parametrization

(burnrate,in/expressure)

Inalldevelopmentlevels,IAVaimsatemployingownphenomenologicalmodelsthatenablepredictive

simulationofsystem

behavior,e.g.

?Ignition

?Knock

?Flamespeed/burnrate

?Engine–outemissions

?Tailpipeemissions

Validationofassumptionsandsimulationresultson

alllevels(specific

componenttestingorin-

situexperiments)ispartofIAV′sdevelopmentprocess

SystemLevel

SubsystemLevel

Virtual

Highfidelity3DCFD

Drivingdesigniterationsforcombustionimprovement

1DSimulation

Validation

Validation

SingleCylinderEngine

Experimental

CombustionmodellingsolutionsforalternativefuelsDevelopmentprocessforH2ICE

ComponentLevel

Initial0D/1D/3DCFD

IAVH2KnockPrediction

IAVH2LaminarFlameSpeedModel

EOemissionsmodel

Validation/Calibration

H2EngineDynos

660kW/pH2≤100barpressure

bomb,RCM,vessel

combustion

spray

RapidPrototypingbymeansof3Dprint,e.g.pistonsandcylinderheads

8IAV04/2024TD-F3mr?Status:draft,public

Combustionmodellingsolutionsforalternativefuels

IAV’sPhenomenologicalHydrogenSICombustionModel

?IAV’sH2combustionmodeldevelopedbasedondetailedchemicalkineticssimulation

?IAV’sphenomenologicalH2combustionmodelincludesdedicatedsubmodelstoconsidermostfuel-specificeffects

1.Laminarflamespeedmodel

Dedicatedapproachforhydrogenlaminarflamespeedsdevelopedbasedondetailedreactionkineticsimulationsandconsideringallrelevantboundaryconditions

(Lambdaupto4,EGRratesofupto50%,pressureofupto250barandentirerelevantunburntgastemperaturerange)

2.Auto-ignitionmodelforthepredictionofknock,capableofconsideringtheeffectofmixtureinhomogeneities

Basedonthewidely-usedLivengood-Wuintegralrepresentingthedegreeofchemicalreactionsintheunburnedmixtureresultinginknock:

C

;A,B,C=f(T,p,λ,EGR)

Parametersfittedbasedonignitiondelaytimesimulationswithdetailedreactionkinetics

Theignitiondelaytimesτarecalculatedwithahydrogen-dedicatedArrhenius-type

equation:

t=te

1=?

t=0

dt

τ=A?e

1000T

B

IAV’sH2combustionmodeliswidelypublished,e.g.Rezaei,R.,Hayduk,C.,Fandakov,A.,Rie?,M.etal.,“NumericalandExperimentalInvestigationsofHydrogenCombustionforHeavy-DutyApplications,”SAETechnicalPaper2021-01-0522

9IAV04/2024TD-F3mr?Status:draft,public

CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV′spremixedH2combustionmodel

FocusofIAV′sproprietaryH2combustionmodel

?H2laminarflamevelocityunderallrelevantboundaryconditions(T,p,lambda,EGR)withpcylupto250bar,lambdaupto4,EGRupto50%

?Asemi-empiricmodeltopredictresidualH2

?Akineticmodeltopredictauto-ignitionandengineknockwithboundariessimilartolaminarflamespeed

ValidationbasisonaperfectlypremixedH2-ICE

?Lambdafrom1.6…3.6,cooledEGRfrom0…30%

?Indicatedmeaneffectivepressurefrom5-22bar

?Enginespeedfrom900-1900rpm

10IAV04/2024TD-F3mr?Status:draft,public

SimulatedSimulated

SimulatedSimulated

SimulatedSimulated

SimulatedSimulated

Prediction:Auto-IgnitionModel

3

bar

I

EP720

±5%in

bar

M

5%

T

otalEGR

Rate±5

%(relati

ve)in%

MaximumPressure±5%inbar

16

14

12

10

8

4。CA

MF

10-MFB7

BurnDu5±3。CA

rationin。CA

PredictionofAuto-Ignition

5。CA

SparkTiming±3。CAin。CAaFTDC

CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV′spremixedH2combustionmodel

PredictionofCombustionCharacteristics

Measured

Measured

0

.3

λ±5%

in-

Measured

5

g/kWh

BSF

C±5

%in

g/kW

h

Measured

a

20br

Measured

Measured

3

。CA

M

FB50

±3。

CAin

。CA

aFTD

C

Measured

6

4

2

0

B

Measured

Crank

Anglea

tAuto-I

gnition

±1。CAi

n。CA

0246810121416

Simulation:ReactionKineticMechanism

IAV’scustomcombustionmodelcanaccuratelypredictallrelevanthydrogencombustioncharacteristicsaswellasauto-ignitionintheunburntmass

11IAV04/2024TD-F3mr?Status:draft,public

Combustionmodellingsolutionsforalternativefuels

λ:2.0

ValidationresultsofIAV′spremixedH2combustionmodel

1316rpm/20barIMEP

Ext.EGR:0%

PFI-perfectlyhomogeneousmixture

RobustH2combustionwithgoodrunningstabilityachievedatlambda2.0;knocklimitfoundat3。CA

12IAV04/2024TD-F3mr?Status:draft,public

KnockPropensityIntegral/1=te

?Validationofpredictedcombustionphasing(MFB50)attheknocklimitwithaconstantcalibrationparameter

value

?Asatisfactoryresultisachievedwithamax.MFB50-deviationof2°CA(OP6)

CombustionmodellingsolutionsforalternativefuelsValidationresultsofIAV′spremixedH2combustionmodel-autoignition

MFB50SensitivityAnalysisonKnockPropensity@1316rpm/20barIMEP

MFB50~2°CA

ValidationofpredictedMFB50-points

?Generaleffectofcombustionphasingonknockpropensityisaccuratelyrepresentedbythephenomenologicalmodel

?Theknocksimulationmodelreliesonthecombustion

characteristicspredictedbyIAV’shydrogencombustionmodel

13IAV04/2024TD-F3mr?Status:draft,public

CombustionmodellingsolutionsforalternativefuelsChallengeswithH2duetoinhomogeneities

?SufficientmixturepreparationisthemostcrucialissuewithH2-ICE

?BeneficialdiffusionbehaviourofH2comparedtootherfuelsplayaratherminorroleduetotherelevanttimescales.

?Insufficienthomogeneitydeliverspoorcombustion-andemissionsperformance.

?H2featuresfastcombustionevenindiluted/leanconditions

?Whilethisfastcombustionisbeneficialforefficiencyandcombustionstability,itcreateshightemperature

?Minimumgloballambdainthemapshallbearound~2withonlysmalllocaldeviations(s(λ)<0.1)inordertoavoidNOxcreation

?FasterH2combustionleadstoincreasedpcylandTcylcomparedtogasoline

?Ultimately,highpandTleadtodrasticallyreducedignitiondelayauto-ignition

?Dilution(air/EGR)mitigatesthisissueandenableoperationathigherspecpower

?Poorhomogeneityandrichspotsneedtobeavoided(PI,Knock,Backfire)

14IAV04/2024TD-F3mr?Status:draft,public

CFDResultLambda

?Injection

?Flow

?Geometry

?Timing

?IAVphenomenologicalcombustionmodel:

?Gasexchange,charging

?Strategy/optimization

lean

rich

-3D

IAV1DLink

Input:CFDresultor“worst

case”assumption

CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignitionprediction

Maindriverforknockandpre-ignitionphenomenaarelocalinhomogeneitiesconcerningtemperatureandlambdadistribution

1DSimulation

hot

likerichzonesandinfluenceof

IAV1Dauto-ignitionmodeliscapabletotakelocalinhomogeneities

plug,

spots(spark

exhaustvalve)intoaccount:

Combustioncalculationwitha“global”enginelambda(two-zonecalculationwiththeentrainmentmodel)

Auto-ignitioncalculationwithLivengood-Wuintegralrepresentingthedegreeofchemicalreactions(pre-

reactions)intheunburnedzone:

Auto-Ignitionpredictionbasedonalocalrichlambdazone

Auto-Ignitionpredictionconsideringalocaltemperatureofahotspot

IAVphenomenological1Dcombustionmodeliscapabletoconsidertolocalinhomogeneitiesoflambdaand

temperatureforauto-ignitionandknockprediction

15IAV04/2024TD-F3mr?Status:draft,public

CombustionmodellingsolutionsforalternativefuelsConsiderationofinhomogeneitiesforauto-ignition

?IAV’sproprietaryhydrogencombustionmodel

packageenablesthepredictive0D/1Dsimulationofhydrogencombustion,knockpropensityand

NOxemissions

?H2-modelscanbeusedforbothsteady-stateandtransientsimulations

?DedicatedGUIformodelparametrizationthatcanbeembeddedintoanyenginemodel

?FullyintegratedresultoutputinGT-POST

?H2-modelscompatiblewithallGT-POWER

versionsafterV2016andavailablefordifferentoperatingsystems

16IAV04/2024TD-F3mr?Status:draft,public

Auto-ignat0%MFB(-3°CA)

Pre-ignition

Auto-ignat0%MFB(0°CA)

Auto-ignat10%MFB(5°CA)

Auto-ignat35%MFB

Auto-ignat65%MFB

Auto-ignition

Noauto-ignition

limit

Combustionmodellingsolutionsforalternativefuels

SensitivityonAuto-IgnitionTendency:Tunburned

?Localhotspotsmightbemodeledviatheinfluenceonlocalunburnedtemperature

?Hotspots(e.g.exhaustvalve,sparkplug)arecharacterizedbyanincreasedlocalunburnedmixturetemperature

?Calibrationofmixtureinhomogeneitiesandhotspotsbasedon3DCFDsimulationresults,combiningthehighfidelityof3DCFDsimulationswiththeexcellentbalancebetweeneffortandaccuracytypicalfor0D/1Dapproaches

?Exemplaryvariationoflocaltemperatureatahotspotrepresentingtheauto-

ignitionlocationintheunburntzone

?Hotspotsrepresentedbymarginally

highertemperatures(+2..4%)resultinanincreasedknockpropensity

?Anunburnttemperatureincreaseofjust6%alreadyresultsinamega-knock

(massfractionburnedatauto-ignitionbelow1%)

17IAV04/2024TD-F3mr?Status:draft,public

?ExemplaryvariationoflocalLambdaattheauto-ignitionlocationintheunburntzone

?Increasedauto-ignitionpropensityatlocalrichzones:

?Richerlambdaresultsinanearlierauto-

ignition;retardingtheignitiontimingrequiredtoreduceknocktendency

Combustionmodellingsolutionsforalternativefuels

SensitivityonAuto-IgnitionTendency:λunburned

?IAV’sauto-ignitionmodeliscapableofconsideringtheeffectsoflocalrichzonesand/orhotspots

?Combustioncalculationbasedonacylinder-averagedin-cylinderLambdavalue,asinhomogeneityeffectonburnratenegligibleinmostcases

?Auto-Ignitionpredictionconsideringlocalrichzonesandgastemperatures(e.g.hotspots)basedon3DCFD

coldflowsimulationresults

Auto-ignat68%MFB(22°CA)

Auto-ignat79%MFB(26°CA)

Auto-ignat96%MFB(34°CA)

NoknockingMFB50=

18.6°CAaFTDC

Knocklimit

18IAV04/2024TD-F3mr?Status:draft,public

ApplicationExamplesforIAV′shydrogencombustionmodel

(LP-)DIpostinjectionH2

Boosting/Optimization1DsimulationforH2engines

CombustionmodellingsolutionsforalternativefuelsApplicationExample:H2LPDIwithpost-injection

?IncontrasttoPFIhydrogeninjection,a2nd(LP-)directinjectionoffersanadditionalchancetoincreaseboostwhichinturncanbeusedtoimproveeitherpowerperformanceorreduceNOxemissions

?Theeffectofa2ndlateinjectiononexhaustenthalpyhasbeeninvestigatedbyIAVbothexperimentallyandin1Dsimulation

?Duetotheimpactonengineefficiency,this”solution“mightbeappliedspecificallyintransientoperationonly

Stationaryat1200rpm/14barTransientloadresponseat1200rpm

20IAV04/2024TD-F3mr?Status:draft,public

Combustionmodellingsolutionsforalternativefuels

LPDIwithpost-injection:cylinderpressureanalysis

Stationaryat1200rpm/14bar

w/postINJ(pred.model)w/postINJ(exp.)

?Verygoodagreementbetweenpredictive1DmodelandmeasurementforwardsimulationcapabilityalsoforpostinjectionandimpactonEATsimulation!

21IAV04/2024TD-F3mr?Status:draft,public

ApplicationExamplesforIAV′shydrogencombustionmodel

(LP-)DIpostinjectionH2

Boosting/Optimization1DsimulationforH2engines

engine

Combustionmodellingsolutionsforalternativefuels

TC-matchingformediumdutyLPDIengine

?(LP-DI)engineshaveaverymuchdifferentdemandontheboostingsystemthanPFIengines

?IAV′spredictiveH21Dcombustionmodelallowsanefficientandaccurateoptimizationoftheboostingsystem

HP-stage

LP-stage

23IAV04/2024TD-F3mr?Status:draft,public

MassMultiplierLP-stage

engine

1.35

torque[Nm]

1.30

1.25

1.20

HP-stage

1.15

LP-stage

)

2.

1.10

1.05

1.00

TC)

(D

Bas

0.95

0.90

0.85

Combustionmodellingsolutionsforalternativefuels

TC-matchingformediumdutyLPDIengine

76

5

De

signa

rea

979

1000

=

rpm05

esize

iesel-

0.850.900.951.001.051.101.151.201.251.301.35

MassMultiplierHP-stage

24IAV04/2024TD-F3mr?Status:draft,public

36.0

MassMultiplierLP-stage

engine

1.35

1.25

765

1.20

HP-stage

0.90

Combustionmodellingsolutionsforalterna

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論