江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第1頁
江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第2頁
江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第3頁
江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第4頁
江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市建鄴區(qū)重點(diǎn)中學(xué)2024屆中考一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)H,連接DH,下列結(jié)論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④2.一次函數(shù)的圖像不經(jīng)過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,點(diǎn)A所表示的數(shù)的絕對值是()A.3 B.﹣3 C. D.4.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°5.下列運(yùn)算結(jié)果正確的是()A.a(chǎn)3+a4=a7 B.a(chǎn)4÷a3=a C.a(chǎn)3?a2=2a3 D.(a3)3=a66.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°7.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨C.“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件D.“a是實(shí)數(shù),|a|≥0”是不可能事件8.如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)C為圓心,大于AC長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN分別交BC,AC于點(diǎn)D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm9.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.10.如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個(gè)數(shù)為()A.4 B.3 C.2 D.1二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.把兩個(gè)同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個(gè)三角尺的銳角頂點(diǎn)與另一個(gè)的直角頂點(diǎn)重合于點(diǎn)A,且另三個(gè)銳角頂點(diǎn)B,C,D在同一直線上.若AB=,則CD=_____.12.若正n邊形的內(nèi)角為,則邊數(shù)n為_____________.13.因式分解a3-6a2+9a=_____.14.已知點(diǎn)P(1,2)關(guān)于x軸的對稱點(diǎn)為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個(gè)單位,所得的直線解析式為.15.________.16.如圖,在平面直角坐標(biāo)系中,以點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內(nèi)交于點(diǎn)p(a,b),則a與b的數(shù)量關(guān)系是________.三、解答題(共8題,共72分)17.(8分)定義:任意兩個(gè)數(shù)a,b,按規(guī)則c=b2+ab﹣a+7擴(kuò)充得到一個(gè)新數(shù)c,稱所得的新數(shù)c為“如意數(shù)”.若a=2,b=﹣1,直接寫出a,b的“如意數(shù)”c;如果a=3+m,b=m﹣2,試說明“如意數(shù)”c為非負(fù)數(shù).18.(8分)已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當(dāng)a為何值時(shí),方程的根僅有唯一的值?求出此時(shí)a的值及方程的根.19.(8分)先化簡,再求值:(﹣m+1)÷,其中m的值從﹣1,0,2中選?。?0.(8分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.(1)用含x的代數(shù)式表示線段CF的長;(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.21.(8分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出B1點(diǎn)的坐標(biāo);(2)畫出△ABC繞原點(diǎn)O旋轉(zhuǎn)180°后得到的圖形△A2B2C2,并寫出B2點(diǎn)的坐標(biāo);(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,并直接寫出點(diǎn)P的坐標(biāo).22.(10分)我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)23.(12分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);(2)如圖2,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).24.如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長線于點(diǎn)F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號和π)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點(diǎn)O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關(guān)系得,O、D、H三點(diǎn)共線時(shí),DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯(cuò)誤,故①③④⑤正確.故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì),解直角三角形,解題的關(guān)鍵是掌握它們的性質(zhì)進(jìn)行解題.2、C【解析】試題分析:根據(jù)一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質(zhì)可知:當(dāng)k>0,b>0時(shí),圖像過一二三象限;當(dāng)k>0,b<0時(shí),圖像過一三四象限;當(dāng)k<0,b>0時(shí),圖像過一二四象限;當(dāng)k<0,b<0,圖像過二三四象限.這個(gè)一次函數(shù)的k=<0與b=1>0,因此不經(jīng)過第三象限.答案為C考點(diǎn):一次函數(shù)的圖像3、A【解析】

根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答即可.【詳解】|-3|=3,故選A.【點(diǎn)睛】此題考查絕對值問題,關(guān)鍵是根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答.4、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點(diǎn):1.面動(dòng)旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).5、B【解析】

分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項(xiàng)的法則對各選項(xiàng)進(jìn)行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項(xiàng),不能合并,本選項(xiàng)錯(cuò)誤;B.a4÷a3=a4-3=a;,本選項(xiàng)正確;C.a3?a2=a5;,本選項(xiàng)錯(cuò)誤;D.(a3)3=a9,本選項(xiàng)錯(cuò)誤.故選B【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項(xiàng)的法則等知識,比較簡單.6、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)7、C【解析】

直接利用概率的意義以及隨機(jī)事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯(cuò)誤;B、天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨,錯(cuò)誤;C、“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“a是實(shí)數(shù),|a|≥0”是必然事件,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了概率的意義以及隨機(jī)事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.8、B【解析】

根據(jù)作法可知MN是AC的垂直平分線,利用垂直平分線的性質(zhì)進(jìn)行求解即可得答案.【詳解】解:根據(jù)作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點(diǎn)睛】本題考查作圖-基本作圖,線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握線段的垂直平分線的性質(zhì).9、B【解析】

找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個(gè),2個(gè),2個(gè),如圖.故選B.【點(diǎn)睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎(chǔ)題型.10、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;綜上所述,正確的結(jié)論有①③⑤,共3個(gè),故選B.考點(diǎn):四邊形綜合題.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點(diǎn)A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個(gè)同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點(diǎn)睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.12、9【解析】分析:根據(jù)正多邊形的性質(zhì):正多邊形的每個(gè)內(nèi)角都相等,結(jié)合多邊形內(nèi)角和定理列出方程進(jìn)行解答即可.詳解:由題意可得:140n=180(n-2),解得:n=9.故答案為:9.點(diǎn)睛:本題解題的關(guān)鍵是要明白以下兩點(diǎn):(1)正多邊形的每個(gè)內(nèi)角相等;(2)n邊形的內(nèi)角和=180(n-2).13、a(a-3)2【解析】

根據(jù)因式分解的方法與步驟,先提取公因式,再根據(jù)完全平方公式分解即可.【詳解】解:故答案為:.【點(diǎn)睛】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關(guān)鍵.14、y=﹣1x+1.【解析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點(diǎn)P(1,2)關(guān)于x軸的對稱點(diǎn)為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個(gè)單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點(diǎn):一次函數(shù)圖象與幾何變換.15、1【解析】

先將二次根式化為最簡,然后再進(jìn)行二次根式的乘法運(yùn)算即可.【詳解】解:原式=2×=1.故答案為1.【點(diǎn)睛】本題考查了二次根式的乘法運(yùn)算,屬于基礎(chǔ)題,掌握運(yùn)算法則是關(guān)鍵.16、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點(diǎn)的橫縱坐標(biāo)互為相反數(shù),故a+b=1.考點(diǎn):1角平分線;2平面直角坐標(biāo)系.三、解答題(共8題,共72分)17、(1)4;(2)詳見解析.【解析】

(1)本題是一道自定義運(yùn)算題型,根據(jù)題中給的如意數(shù)的概念,代入即可得出結(jié)果(2)根據(jù)如意數(shù)的定義,求出代數(shù)式,分析取值范圍即可.【詳解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意數(shù)”c為非負(fù)數(shù)【點(diǎn)睛】本題考查了因式分解,完全平方式(m﹣1)2的非負(fù)性,難度不大.18、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a(bǔ)代入原方程,進(jìn)一步解方程即可;(2)分兩種情況探討:①當(dāng)a=3時(shí),為一元一次方程;②當(dāng)a≠3時(shí),利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當(dāng)a=3時(shí),方程為2x=3,解得:x=3.②當(dāng)a≠3時(shí),由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當(dāng)a=2時(shí),原方程為:x2+2x+3=3,解得:x3=x2=-3;當(dāng)a=3時(shí),原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當(dāng)a=3,3,2時(shí),方程僅有一個(gè)根,分別為3,3,-3.考點(diǎn):3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應(yīng)用.19、,當(dāng)m=0時(shí),原式=﹣1.【解析】

原式括號中兩項(xiàng)通分,并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡結(jié)果.根據(jù)分?jǐn)?shù)分母不為零的性質(zhì),不等于-1、2,將代入原式即可解出答案.【詳解】解:原式,,,,∵且,∴當(dāng)時(shí),原式.【點(diǎn)睛】本題主要考查分?jǐn)?shù)的性質(zhì)、通分,四則運(yùn)算法則以及倒數(shù).20、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】

試題分析:(1)根據(jù)等腰直角三角形的性質(zhì),求得∠DAC=∠ACD=45°,進(jìn)而根據(jù)兩角對應(yīng)相等的兩三角形相似,可得△CEF∽△CAE,然后根據(jù)相似三角形的性質(zhì)和勾股定理可求解;(2)根據(jù)相似三角形的判定與性質(zhì),由三角形的周長比可求解;(3)由(2)中的相似三角形的對應(yīng)邊成比例,可求出AB的關(guān)系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據(jù)勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.21、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】

試題分析:(1)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;(2)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于原點(diǎn)的對稱點(diǎn)A2、B2、C2的位置,然后順次連接即可;(3)、找出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′,連接A′B與x軸相交于一點(diǎn),根據(jù)軸對稱確定最短路線問題,交點(diǎn)即為所求的點(diǎn)P的位置,然后連接AP、BP并根據(jù)圖象寫出點(diǎn)P的坐標(biāo)即可.試題解析:(1)、△A1B1C1如圖所示;B1點(diǎn)的坐標(biāo)(-4,2)(2)、△A2B2C2如圖所示;B2點(diǎn)的坐標(biāo):(-4,-2)(3)、△PAB如圖所示,P(2,0).考點(diǎn):(1)、作圖-旋轉(zhuǎn)變換;(2)、軸對稱-最短路線問題;(3)、作圖-平移變換.22、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.23、(1)45°;(2)26°.【解析】

(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可以求得∠ABC和∠ABD的大?。唬?)根據(jù)題意和平行線的性質(zhì)、切線的性質(zhì)可以求得∠OCD的大小.【詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論