版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆重慶市七校聯(lián)考高考數(shù)學(xué)倒計(jì)時(shí)模擬卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對(duì)稱 D.函數(shù)圖像關(guān)于對(duì)稱2.一個(gè)頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計(jì)樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)共有()A. B. C. D.3.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.4.已知數(shù)列滿足,則()A. B. C. D.5.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或6.設(shè),則()A. B. C. D.7.已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則雙曲線的離心率為()A. B. C.3 D.48.雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過(guò)點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.29.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.在中,角、、所對(duì)的邊分別為、、,若,則()A. B. C. D.11.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,則等于()A. B. C. D.12.已知為一條直線,為兩個(gè)不同的平面,則下列說(shuō)法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線的斜率為_(kāi)_______.14.已知橢圓,,若橢圓上存在點(diǎn)使得為等邊三角形(為原點(diǎn)),則橢圓的離心率為_(kāi)________.15.安排名男生和名女生參與完成項(xiàng)工作,每人參與一項(xiàng),每項(xiàng)工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).16.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_(kāi)____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)對(duì)于很多人來(lái)說(shuō),提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來(lái)買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來(lái)”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計(jì)40歲及以下15355040歲以上203050合計(jì)3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再?gòu)倪@10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點(diǎn),若,求的值.19.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.20.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.21.(12分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)如圖,在四棱錐中,,,,和均為邊長(zhǎng)為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
依題意可得,即函數(shù)圖像關(guān)于對(duì)稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對(duì)稱,又,在上不單調(diào).故正確的只有C,故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.2、B【解析】
計(jì)算出樣本在的數(shù)據(jù)個(gè)數(shù),再減去樣本在的數(shù)據(jù)個(gè)數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個(gè)數(shù)為,樣本在的數(shù)據(jù)個(gè)數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)為.故選:B.【點(diǎn)睛】本題考查利用頻數(shù)分布表計(jì)算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.3、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問(wèn)題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.4、C【解析】
利用的前項(xiàng)和求出數(shù)列的通項(xiàng)公式,可計(jì)算出,然后利用裂項(xiàng)法可求出的值.【詳解】.當(dāng)時(shí),;當(dāng)時(shí),由,可得,兩式相減,可得,故,因?yàn)橐策m合上式,所以.依題意,,故.故選:C.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于中等題.5、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.6、D【解析】
結(jié)合指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點(diǎn)睛】本題考查了幾個(gè)數(shù)的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
根據(jù)題意,由拋物線的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線的焦點(diǎn)坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,拋物線的焦點(diǎn)為,則雙曲線的焦點(diǎn)也為,即,則有,解可得,雙曲線的離心率.故選:A.【點(diǎn)睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點(diǎn)的坐標(biāo),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、A【解析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)?,所以為線段的中點(diǎn),所以,,整理得,故該雙曲線的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.9、B【解析】
根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問(wèn)題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.10、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
先通過(guò)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.12、D【解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.14、【解析】
根據(jù)題意求出點(diǎn)N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.15、1296【解析】
先從4個(gè)男生選2個(gè)一組,將4人分成三組,然后從4個(gè)女生選2個(gè)一組,將4人分成三組,然后全排列即可.【詳解】由于每項(xiàng)工作至少由名男生和名女生完成,則先從4個(gè)男生選2個(gè)一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,考查了學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.16、-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)不能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見(jiàn)解析,,【解析】
(1)計(jì)算再對(duì)照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計(jì)算3人或4人偶爾或不用信用卡的概率即可.②利用二項(xiàng)分布的特點(diǎn)求解變量的分布列、數(shù)學(xué)期望和方差即可.【詳解】(1)由列聯(lián)表可知,,因?yàn)?所以不能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān).(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經(jīng)常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經(jīng)常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用信用卡的市民的概率為.由題意得,則,,,.故隨機(jī)變量的分布列為:0123故隨機(jī)變量的數(shù)學(xué)期望為,方差為.【點(diǎn)睛】本題主要考查了獨(dú)立性檢驗(yàn)以及超幾何分布與二項(xiàng)分布的知識(shí)點(diǎn),包括分類討論以及二項(xiàng)分布的數(shù)學(xué)期望與方差公式等.屬于中檔題.18、(1)證明見(jiàn)解析(2)(3)【解析】
(1)取中點(diǎn)為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進(jìn)而求證;(2)以為原點(diǎn),過(guò)作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),由點(diǎn)在棱上,可設(shè),即可得到,再求得平面的法向量,進(jìn)而利用數(shù)量積求解;(3)設(shè),,則,求得,,即可求得點(diǎn)的坐標(biāo),再由與平面的法向量垂直,進(jìn)而求解.【詳解】(1)證明:取中點(diǎn)為,連接,因?yàn)槭堑冗吶切?所以,因?yàn)榍蚁嘟挥?所以平面,所以,因?yàn)?所以,因?yàn)?在平面內(nèi),所以,所以.(2)以為原點(diǎn),過(guò)作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),則,,,,因?yàn)樵诶馍?可設(shè),所以,設(shè)平面的法向量為,因?yàn)?所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當(dāng)時(shí),取最大值.(3)設(shè),則有,得,設(shè),那么,所以,所以.因?yàn)?,所以.又因?yàn)?所以,,設(shè)平面的法向量為,則,即,,可得,即因?yàn)樵谄矫鎯?nèi),所以,所以,所以,即,所以或者(舍),即.【點(diǎn)睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運(yùn)算能力與空間想象能力.19、(1)1;(2)證明見(jiàn)解析.【解析】
(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當(dāng)且僅當(dāng)時(shí)取等號(hào)綜上.【點(diǎn)睛】本題主要考查了求絕對(duì)值不等式中參數(shù)的范圍以及基本不等式的應(yīng)用,屬于中檔題.20、(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解析】
(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時(shí),,單調(diào)遞增;時(shí),令得,時(shí),,遞減,時(shí),,遞增,綜上所述,時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時(shí),,,從而只需時(shí),恒成立,即,令,,在上遞減,在上遞增,∴,從而.時(shí),,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個(gè)數(shù)與不等式恒成立問(wèn)題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問(wèn)題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過(guò)導(dǎo)數(shù)求解.21、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場(chǎng)施工許可證制度
- 施工日志填寫樣本的格式要求
- 設(shè)計(jì)思維在醫(yī)療技術(shù)創(chuàng)新中的應(yīng)用
- 智能科技在家?;?dòng)中的應(yīng)用與前景展望
- DB4415T 50-2025黑芝麻種植技術(shù)規(guī)程
- 個(gè)人貸款合同協(xié)議書范本
- 親屬間房產(chǎn)贈(zèng)與合同
- 二手建筑設(shè)備買賣合同樣本
- 乒乓球館租賃合同書范本
- 不可撤銷勞動(dòng)合同案例析:勞動(dòng)者權(quán)益保障
- 糖尿病足的多學(xué)科聯(lián)合治療
- 小龍蝦啤酒音樂(lè)節(jié)活動(dòng)策劃方案課件
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第五章運(yùn)動(dòng)中的中樞控制
- 財(cái)務(wù)部規(guī)范化管理 流程圖
- 蘇教版2023年小學(xué)四年級(jí)數(shù)學(xué)下冊(cè)教學(xué)計(jì)劃+教學(xué)進(jìn)度表
- 小學(xué)作文指導(dǎo)《難忘的一件事》課件
- 斷絕關(guān)系協(xié)議書范文參考(5篇)
- 量子力學(xué)課件1-2章-波函數(shù)-定態(tài)薛定諤方程
- 最新變態(tài)心理學(xué)課件
- 【自考練習(xí)題】石家莊學(xué)院概率論與數(shù)理統(tǒng)計(jì)真題匯總(附答案解析)
- 農(nóng)村集體“三資”管理流程圖
評(píng)論
0/150
提交評(píng)論