![2023-2024學(xué)年遼寧省本溪市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view5/M00/13/03/wKhkGGZCBb-ACZH2AAJYyvuY37o850.jpg)
![2023-2024學(xué)年遼寧省本溪市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view5/M00/13/03/wKhkGGZCBb-ACZH2AAJYyvuY37o8502.jpg)
![2023-2024學(xué)年遼寧省本溪市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view5/M00/13/03/wKhkGGZCBb-ACZH2AAJYyvuY37o8503.jpg)
![2023-2024學(xué)年遼寧省本溪市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view5/M00/13/03/wKhkGGZCBb-ACZH2AAJYyvuY37o8504.jpg)
![2023-2024學(xué)年遼寧省本溪市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view5/M00/13/03/wKhkGGZCBb-ACZH2AAJYyvuY37o8505.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年遼寧省本溪市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.2.已知雙曲線的一個焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對稱的兩點(diǎn),以為直徑的圓過且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為()A. B.C. D.3.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?4.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.5.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.6.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.7.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點(diǎn);則下列命題為真命題的是()A. B. C. D.8.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.已知雙曲線的左、右頂點(diǎn)分別是,雙曲線的右焦點(diǎn)為,點(diǎn)在過且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時,點(diǎn)恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.10.在正方體中,點(diǎn)、分別為、的中點(diǎn),過點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.11.設(shè),,,則的大小關(guān)系是()A. B. C. D.12.已知向量滿足,且與的夾角為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公園劃船收費(fèi)標(biāo)準(zhǔn)如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費(fèi)用為______元,租船的總費(fèi)用共有_____種可能.14.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.15.已知實(shí)數(shù)滿約束條件,則的最大值為___________.16.已知以x±2y=0為漸近線的雙曲線經(jīng)過點(diǎn),則該雙曲線的標(biāo)準(zhǔn)方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個極值點(diǎn),求證:.18.(12分)網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機(jī)器故障進(jìn)行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實(shí)地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機(jī)構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實(shí)地看病的滿意程度,在每種看病方式的患者中各隨機(jī)抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實(shí)地看病兩種方式進(jìn)行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實(shí)地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計(jì)網(wǎng)絡(luò)看病實(shí)地看病總計(jì)并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機(jī)抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)求函數(shù)的最大值.20.(12分)已知動點(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且時,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).21.(12分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求22.(10分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點(diǎn)為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.3、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.4、D【解析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因?yàn)椋?,,所以的周期?,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.5、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.6、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.7、A【解析】
先分別判斷每一個命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當(dāng)時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當(dāng)直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當(dāng)時,沒有零點(diǎn),所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點(diǎn)睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對這些知識的理解掌握水平.8、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.9、A【解析】
點(diǎn)的坐標(biāo)為,,展開利用均值不等式得到最值,將點(diǎn)代入雙曲線計(jì)算得到答案.【詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因?yàn)椋?,所以,?dāng)且僅當(dāng),即當(dāng)時,等號成立,此時最大,此時的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【點(diǎn)睛】本題考查了求雙曲線方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.10、B【解析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【點(diǎn)睛】本題考查線段長度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.11、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.12、A【解析】
根據(jù)向量的運(yùn)算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、36010【解析】
列出所有租船的情況,分別計(jì)算出租金,由此能求出結(jié)果.【詳解】當(dāng)租兩人船時,租金為:元,當(dāng)租四人船時,租金為:元,當(dāng)租1條四人船6條兩人船時,租金為:元,當(dāng)租2條四人船4條兩人船時,租金為:元,當(dāng)租3條四人船2條兩人船時,租金為:元,當(dāng)租1條六人船5條2人船時,租金為:元,當(dāng)租2條六人船2條2人船時,租金為:元,當(dāng)租1條六人船1條四人船3條2人船時,租金為:元,當(dāng)租1條六人船2條四人船1條2人船時,租金為:元,當(dāng)租2條六人船1條四人船時,租金為:元,綜上,租船最低總費(fèi)用為360元,租船的總費(fèi)用共有10種可能.故答案為:360,10.【點(diǎn)睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實(shí)際應(yīng)用問題,屬于基礎(chǔ)題.14、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點(diǎn),此時,目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點(diǎn)此時,目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.15、8【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移計(jì)算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標(biāo)函數(shù)表示直線在軸上的截距,由圖可知當(dāng)經(jīng)過點(diǎn)時截距最大,故的最大值為8.故答案為:.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.16、【解析】
設(shè)雙曲線方程為,代入點(diǎn),計(jì)算得到答案.【詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點(diǎn),則.故雙曲線方程為:.故答案為:.【點(diǎn)睛】本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)求導(dǎo)得到,討論,,三種情況得到單調(diào)區(qū)間.(Ⅱ)設(shè),要證,即證,,設(shè),根據(jù)函數(shù)單調(diào)性得到證明.【詳解】(Ⅰ),令,,(1)當(dāng),即時,,,在上單調(diào)遞增;(2)當(dāng),即時,設(shè)的兩根為(),,①若,,時,,所以在和上單調(diào)遞增,時,,所以在上單調(diào)遞減,②若,,時,,所以在上單調(diào)遞減,時,,所以在上單調(diào)遞增.綜上,當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(Ⅱ)不妨設(shè),要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調(diào)遞增,所以,因?yàn)椋?,所?【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,證明不等式,意在考查學(xué)生的分類討論能力和計(jì)算能力.18、(1)實(shí)地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對實(shí)地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨(dú)立性檢驗(yàn)得有的把握認(rèn)為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實(shí)地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡(luò)看病中,有的患者滿意度評分低于80分;在實(shí)地看病中,有的患者評分高于80分,因此患者對實(shí)地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡(luò)看病滿意度評分的中位數(shù)為73分,實(shí)地看病評分的中位數(shù)為87分,因此患者對實(shí)地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評分平均分低于80分;實(shí)地看病的滿意度的評分平均分高于80分,因此患者對實(shí)地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評分在莖6上的最多,關(guān)于莖7大致呈對稱分布;實(shí)地看病的評分分布在莖8,上的最多,關(guān)于莖8大致呈對稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認(rèn)為實(shí)地看病評分比網(wǎng)絡(luò)看病打分更高,因此實(shí)地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網(wǎng)絡(luò)看病滿意度調(diào)查的15名患者中共有5名對網(wǎng)絡(luò)看病滿意,10名對網(wǎng)絡(luò)看病不滿意;參加實(shí)地看病滿意度調(diào)查的15名患者中共有10名對實(shí)地看病滿意,5名對實(shí)地看病不滿意.故完成列聯(lián)表如下:滿意不滿意總計(jì)網(wǎng)絡(luò)看病51015實(shí)地看病10515總計(jì)151530于是,所以有的把握認(rèn)為患者看病滿意度與看病方式有關(guān).(3)網(wǎng)絡(luò)看病的評價的分?jǐn)?shù)依次為82,85,85,88,92,由小到大分別記為,從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機(jī)抽取2人,所有可能情況有:;;;共10種,其中,這2人評分都低于90分的情況有:;;共6種,故由古典概型公式得這2人評分都低于90分的概率.【點(diǎn)睛】本題主要考查莖葉圖的應(yīng)用和獨(dú)立性檢驗(yàn),考查古典概型的概率的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.19、【解析】
試題分析:由柯西不等式得試題解析:因?yàn)?,所以.等號?dāng)且僅當(dāng),即時成立.所以的最大值為.考點(diǎn):柯西不等式求最值20、(1)或;(2)證明見解析,定點(diǎn)【解析】
(1)設(shè),由題意可知,對的正負(fù)分情況討論,從而求得動點(diǎn)的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達(dá)定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點(diǎn).【詳解】(1)設(shè),動點(diǎn)到定點(diǎn)的距離比到軸的距離多,,時,解得,時,解得.動點(diǎn)的軌跡的方程為或(2)證明:如圖,設(shè),,由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達(dá)定理知,,①顯然,,,,將①式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點(diǎn).【點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融服務(wù)行業(yè)綠色金融與投資顧問方案
- 公司計(jì)時工作勞動合同書
- 行政合同的主體是
- 農(nóng)民合作社經(jīng)營管理方案
- 企業(yè)服務(wù)質(zhì)量管理作業(yè)指導(dǎo)書
- 保安員工合同
- 2025年南陽b2貨運(yùn)上崗證模擬考試
- 小學(xué)二年級數(shù)學(xué)上冊口算練習(xí)題
- 電商代運(yùn)營合同(2篇)
- 電力合同管理協(xié)議(2篇)
- CJT 354-2010 城市軌道交通車輛空調(diào)、采暖及通風(fēng)裝置技術(shù)條件
- 2024年成都市中考數(shù)學(xué)試卷(含詳細(xì)解析)
- 暑假作業(yè) 11 高二英語語法填空20篇(原卷版)-【暑假分層作業(yè)】2024年高二英語暑假培優(yōu)練(人教版2019)
- 2023-2024學(xué)年浙江省溫州市七年級(上)期末英語試卷
- GMP附錄《無菌藥品》試卷測試題庫含答案
- JBT 7387-2014 工業(yè)過程控制系統(tǒng)用電動控制閥
- 小學(xué)數(shù)學(xué)教學(xué)評一體化教學(xué)探究
- 2024年江西省南昌市南昌縣中考一模數(shù)學(xué)試題(含解析)
- 2024年保安員考試題庫【典型題】
- 人教版數(shù)學(xué)八年級下冊第十九章課堂同步練習(xí)
- (正式版)JBT 106-2024 閥門的標(biāo)志和涂裝
評論
0/150
提交評論