安徽省當涂縣四校2024屆中考聯(lián)考數學試卷含解析_第1頁
安徽省當涂縣四校2024屆中考聯(lián)考數學試卷含解析_第2頁
安徽省當涂縣四校2024屆中考聯(lián)考數學試卷含解析_第3頁
安徽省當涂縣四校2024屆中考聯(lián)考數學試卷含解析_第4頁
安徽省當涂縣四校2024屆中考聯(lián)考數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省當涂縣四校2024屆中考聯(lián)考數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.82.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.3.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.4.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-35.如圖,AB∥CD,E為CD上一點,射線EF經過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°6.如圖,若二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數是()A.1 B.2 C.3 D.47.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°8.在六張卡片上分別寫有,π,1.5,5,0,六個數,從中任意抽取一張,卡片上的數為無理數的概率是()A. B. C. D.9.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.10.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處二、填空題(共7小題,每小題3分,滿分21分)11.函數y=+中,自變量x的取值范圍是_____.12.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.13.在比例尺為1:50000的地圖上,量得甲、乙兩地的距離為12厘米,則甲、乙兩地的實際距離是______千米.14.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.15.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.16.若關于x的方程kx2+2x﹣1=0有實數根,則k的取值范圍是_____.17.如圖,將△AOB以O為位似中心,擴大得到△COD,其中B(3,0),D(4,0),則△AOB與△COD的相似比為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,某校準備給長12米,寬8米的矩形室內場地進行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內白色區(qū)域的面積越大,室內光線亮度越好.當為多少時,室內光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數,若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.19.(5分)如圖,在△ABC中,點D在邊BC上,聯(lián)結AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.20.(8分)如圖,已知拋物線經過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.21.(10分)已知:如圖,E,F(xiàn)是?ABCD的對角線AC上的兩點,BE∥DF.求證:AF=CE.22.(10分)某學校要了解學生上學交通情況,選取七年級全體學生進行調查,根據調查結果,畫出扇形統(tǒng)計圖(如圖),圖中“公交車”對應的扇形圓心角為60°,“自行車”對應的扇形圓心角為120°,已知七年級乘公交車上學的人數為50人.(1)七年級學生中,騎自行車和乘公交車上學的學生人數哪個更多?多多少人?(2)如果全校有學生2400人,學校準備的600個自行車停車位是否足夠?23.(12分)小明和小亮玩一個游戲:取三張大小、質地都相同的卡片,上面分別標有數字2、3、4(背面完全相同),現(xiàn)將標有數字的一面朝下.小明從中任意抽取一張,記下數字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數字之和.請你用畫樹狀圖或列表的方法,求出這兩數和為6的概率.如果和為奇數,則小明勝;若和為偶數,則小亮勝.你認為這個游戲規(guī)則對雙方公平嗎?做出判斷,并說明理由.24.(14分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.2、A【解析】根據軸對稱圖形的概念求解.解:根據軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、A【解析】【分析】根據正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數依次為2,1,如圖所示:故選A.【點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.4、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數冪的乘法;平方差公式.5、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質,熟知兩直線平行,同位角相等是解答此題的關鍵.6、B【解析】分析:直接利用二次函數圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數的性質以及二次函數最值等知識,正確得出A點坐標是解題關鍵.7、D【解析】

①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.8、B【解析】

無限不循環(huán)小數叫無理數,無理數通常有以下三種形式:一是開方開不盡的數,二是圓周率π,三是構造的一些不循環(huán)的數,如1.010010001……(兩個1之間0的個數一次多一個).然后用無理數的個數除以所有書的個數,即可求出從中任意抽取一張,卡片上的數為無理數的概率.【詳解】∵這組數中無理數有,共2個,∴卡片上的數為無理數的概率是.故選B.【點睛】本題考查了無理數的定義及概率的計算.9、B【解析】

延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.10、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題(共7小題,每小題3分,滿分21分)11、x≥﹣2且x≠1【解析】分析:根據使分式和二次根式有意義的要求列出關于x的不等式組,解不等式組即可求得x的取值范圍.詳解:∵有意義,∴,解得:且.故答案為:且.點睛:本題解題的關鍵是需注意:要使函數有意義,的取值需同時滿足兩個條件:和,二者缺一不可.12、2【解析】

設MN=y,PC=x,根據正方形的性質和勾股定理列出y1關于x的二次函數關系式,求二次函數的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質、勾股定理、二次函數的最值.熟練掌握勾股定理和二次函數的最值是解決問題的關鍵.13、【解析】

本題可根據比例線段進行求解.【詳解】解:因為在比例尺為1:50000的地圖上甲,乙兩地的距離12cm,所以,甲、乙的實際距離x滿足12:x=1:50000,即x=12=600000cm=6km.故答案為6.【點睛】本題主要考查比例尺和比例線段的相關知識.14、【解析】

連接AC、CF,GE,根據菱形性質求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,菱形的性質,勾股定理,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.15、10【解析】

由正方形性質的得出B、D關于AC對稱,根據兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.16、k≥-1【解析】

首先討論當時,方程是一元一次方程,有實數根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.17、3:1.【解析】∵△AOB與△COD關于點O成位似圖形,

∴△AOB∽△COD,

則△AOB與△COD的相似比為OB:OD=3:1,

故答案為3:1(或).三、解答題(共7小題,滿分69分)18、(1)8m2;(2)68m2;(3)40,8【解析】

(1)根據中心對稱圖形性質和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點式,根據,,,求出自變量的取值范圍,再根據二次函數的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數式表示出費用,因為m,n均為正整數,解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數,解得m=40,n=8.【點睛】本題考查中心對稱圖形性質,菱形、直角三角形的面積計算,二次函數的最值問題,解題關鍵是用含x的二次函數解析式表示出白色區(qū)面積.19、見解析【解析】試題分析:(1),,可得∽,從而得,再根據∠BDF=∠CDA即可證;(2)由∽,可得,從而可得,再由∽,可得從而得,繼而可得,得到.試題解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【點睛】本題考查了相似三角形的性質與判定,能結合圖形以及已知條件靈活選擇恰當的方法進行證明是關鍵.20、(1);(2)(,1)(,1);(3)存在,,,,【解析】試題分析:(1)將x=-2代入y=-2x-1即可求得點B的坐標,根據拋物線過點A、O、B即可求出拋物線的方程.(2)根據題意,可知△ADP和△ADC的高相等,即點P縱坐標的絕對值為1,所以點P的縱坐標為,分別代入中求解,即可得到所有符合題意的點P的坐標.(3)由拋物線的解析式為,得頂點E(2,﹣1),對稱軸為x=2;點F是直線y=﹣2x﹣1與對稱軸x=2的交點,求出F(2,﹣1),DF=1.又由A(4,0),根據勾股定理得.然后分4種情況求解.點睛:(1)首先求出點B的坐標和m的值,然后利用待定系數法求出拋物線的解析式;(2)△ADP與△ADC有共同的底邊AD,因為面積相等,所以AD邊上的高相等,即為1;從而得到點P的縱坐標為1,再利用拋物線的解析式求出點P的縱坐標;(3)如解答圖所示,在點M的運動過程中,依次出現(xiàn)四個菱形,注意不要漏解.針對每一個菱形,分別進行計算,求出線段MF的長度,從而得到運動時間t的值.21、參見解析.【解析】分析:先證∠ACB=∠CAD,再證出△BEC≌△DFA,從而得出CE=AF.詳解:證明:平行四邊形中,,,.又,,,點睛:本題利用了平行四邊形的性質,全等三角形的判定和性質.22、(1)騎自行車的人數多,多50人;(2)學校準備的600個自行車停車位不足夠,理由見解析【解析】分析:(1)根據乘公交車的人數除以乘公交車的人數所占的比例,可得調查的樣本容量,根據樣本容量乘以自行車所占的百分比,可得騎自行車的人數,根據有理數的減法,可得答案;(2)根據學校總人數乘以騎自行車所占的百分比,可得答案.詳解:(1)乘公交車所占的百分比=,調查的樣本容量50÷=300人,騎自行車的人數300×=100人,騎自行車的人數多,多100﹣50=50人;(2)全校騎自行車的人數2400×=800人,800>600,故學校準備的600個自行車停車位不足夠.點睛:本題考查了扇形統(tǒng)計圖,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論