山西省運(yùn)城市芮城縣三校2024屆高三考前熱身數(shù)學(xué)試卷含解析_第1頁(yè)
山西省運(yùn)城市芮城縣三校2024屆高三考前熱身數(shù)學(xué)試卷含解析_第2頁(yè)
山西省運(yùn)城市芮城縣三校2024屆高三考前熱身數(shù)學(xué)試卷含解析_第3頁(yè)
山西省運(yùn)城市芮城縣三校2024屆高三考前熱身數(shù)學(xué)試卷含解析_第4頁(yè)
山西省運(yùn)城市芮城縣三校2024屆高三考前熱身數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省運(yùn)城市芮城縣三校2024屆高三考前熱身數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的定義域?yàn)椋?,則()A. B. C. D.2.已知非零向量滿(mǎn)足,,且與的夾角為,則()A.6 B. C. D.33.在中,,,,點(diǎn)滿(mǎn)足,則等于()A.10 B.9 C.8 D.74.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.5.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.46.設(shè)過(guò)定點(diǎn)的直線(xiàn)與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線(xiàn)的斜率的取值范圍為()A. B.C. D.7.若,則的虛部是()A. B. C. D.8.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.9.已知雙曲線(xiàn)的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線(xiàn)的一條漸近線(xiàn)交于點(diǎn)及點(diǎn),則雙曲線(xiàn)的方程為()A. B. C. D.10.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.18011.已知函,,則的最小值為()A. B.1 C.0 D.12.已知直線(xiàn):()與拋物線(xiàn):交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線(xiàn):與拋物線(xiàn)交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量服從正態(tài)分布,若,則_________.14.已知向量,,則______.15.已知(且)有最小值,且最小值不小于1,則的取值范圍為_(kāi)_________.16.某校高二(4)班統(tǒng)計(jì)全班同學(xué)中午在食堂用餐時(shí)間,有7人用時(shí)為6分鐘,有14人用時(shí)7分鐘,有15人用時(shí)為8分鐘,還有4人用時(shí)為10分鐘,則高二(4)班全體同學(xué)用餐平均用時(shí)為_(kāi)___分鐘.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線(xiàn)是曲線(xiàn)的切線(xiàn).(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).18.(12分)如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線(xiàn)的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線(xiàn)與平面所成的角為,求二面角的正弦值.19.(12分)已知函數(shù).(1)若在上是減函數(shù),求實(shí)數(shù)的最大值;(2)若,求證:.20.(12分)設(shè)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(xiàn)(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿(mǎn)足?并說(shuō)明理由.21.(12分)的內(nèi)角,,的對(duì)邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長(zhǎng).22.(10分)健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問(wèn)題:(1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率(2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤(rùn);(3)假設(shè)每個(gè)會(huì)員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會(huì)員中隨機(jī)抽取兩位,記從這兩位會(huì)員的消費(fèi)獲得的平均利潤(rùn)之差的絕對(duì)值為,求的分布列及數(shù)學(xué)期望

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.2、D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿(mǎn)足,可知兩個(gè)向量垂直,,且與的夾角為,說(shuō)明以向量,為鄰邊,為對(duì)角線(xiàn)的平行四邊形是正方形,所以則.故選:.【點(diǎn)睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,屬于基礎(chǔ)題.3、D【解析】

利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿(mǎn)足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.4、D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱(chēng)軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱(chēng)軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.5、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。6、D【解析】

設(shè)直線(xiàn):,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線(xiàn)與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線(xiàn)不滿(mǎn)足條件,故可設(shè)直線(xiàn):,,,由,得,,解得或,,,,,,解得,直線(xiàn)的斜率的取值范圍為.故選:D.【點(diǎn)睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識(shí)和圓錐曲線(xiàn)與直線(xiàn)交點(diǎn)問(wèn)題時(shí),通常用直線(xiàn)和圓錐曲線(xiàn)聯(lián)立方程組,通過(guò)韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.7、D【解析】

通過(guò)復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8、C【解析】

對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)椋谏喜皇菃握{(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開(kāi)口向上的拋物線(xiàn),對(duì)稱(chēng)軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.9、C【解析】

根據(jù)雙曲線(xiàn)方程求出漸近線(xiàn)方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線(xiàn),則漸近線(xiàn)方程:,,連接,則,解得,所以,解得.故雙曲線(xiàn)方程為.故選:C【點(diǎn)睛】本題考查了雙曲線(xiàn)的幾何性質(zhì),需掌握雙曲線(xiàn)的漸近線(xiàn)求法,屬于中檔題.10、A【解析】

因?yàn)椋傻茫鶕?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.12、D【解析】

設(shè),,聯(lián)立直線(xiàn)與拋物線(xiàn)方程,消去、列出韋達(dá)定理,再由直線(xiàn)與拋物線(xiàn)的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、0.4【解析】

因?yàn)殡S機(jī)變量ζ服從正態(tài)分布,利用正態(tài)曲線(xiàn)的對(duì)稱(chēng)性,即得解.【詳解】因?yàn)殡S機(jī)變量ζ服從正態(tài)分布所以正態(tài)曲線(xiàn)關(guān)于對(duì)稱(chēng),所.【點(diǎn)睛】本題考查了正態(tài)分布曲線(xiàn)的對(duì)稱(chēng)性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.14、【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.15、【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.16、7.5【解析】

分別求出所有人用時(shí)總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點(diǎn)睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計(jì)算出所有數(shù)據(jù)之和,易錯(cuò)點(diǎn)在于概念辨析不清導(dǎo)致計(jì)算出錯(cuò).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】

(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線(xiàn)上、又在切線(xiàn)上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線(xiàn)與曲線(xiàn)相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類(lèi)討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.18、(1)見(jiàn)解析;(2).【解析】

(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線(xiàn)面垂直的定義和判定定理即可證明;

2建立空間直角坐標(biāo)系,利用向量知識(shí)求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點(diǎn),,又平面(2)∴直線(xiàn)與平面所成的角等于直線(xiàn)與平面所成的角.平面,∴直線(xiàn)與平面所成的角為,即.因?yàn)椋瑒t在等腰直角三角形中,所以.在中,由得,以為原點(diǎn),分別以為軸建立空間直角坐標(biāo)系.則所以設(shè)平面的一個(gè)法向量為,則,可得,取平面的一個(gè)法向量為,則,所以二面角的正弦值的大小為.(注:?jiǎn)栴}(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過(guò)點(diǎn)作的垂線(xiàn),垂足為,連接,則就是所求二面角平面角的補(bǔ)角,先求出,再求出,最后在中求出.)【點(diǎn)睛】本題主要考查了線(xiàn)面垂直的判定以及二面角的求解,屬于中檔題.19、(1)(2)詳見(jiàn)解析【解析】

(1),在上,因?yàn)槭菧p函數(shù),所以恒成立,即恒成立,只需.令,,則,因?yàn)椋?所以在上是增函數(shù),所以,所以,解得.所以實(shí)數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因?yàn)?,?dāng)從正方向趨近于0時(shí),趨近于,趨近于1,所以,所以存在,使,即,,所以對(duì)任意,,即,所以在上是減函數(shù);對(duì)任意,,即,所以在上是增函數(shù),所以當(dāng)時(shí),取得最小值,最小值為.由于,,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),所以當(dāng)時(shí),.20、(1)證明見(jiàn)解析(0,2);(2)存在,理由見(jiàn)解析【解析】

(1)設(shè)直線(xiàn)l的方程為y=kx+b代入拋物線(xiàn)的方程,利用OA⊥OB,求出b,即可知直線(xiàn)過(guò)定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線(xiàn)與拋物線(xiàn),橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線(xiàn)l的斜率存在且不過(guò)原點(diǎn),故設(shè)由可得,.,,故所以直線(xiàn)l的方程為故直線(xiàn)l恒過(guò)定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿(mǎn)足題意.【點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)、橢圓的位置關(guān)系,直線(xiàn)過(guò)定點(diǎn)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.21、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問(wèn)題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長(zhǎng).(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.22、(1)(2)22.5(3)見(jiàn)解析,【解析】

(1)根據(jù)頻數(shù)計(jì)算頻率,得出概率;(2)根

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論