![江西省吉安市遂州縣達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第1頁](http://file4.renrendoc.com/view5/M00/02/3D/wKhkGGZFPSqAfTEGAAHIxNVwW5g465.jpg)
![江西省吉安市遂州縣達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第2頁](http://file4.renrendoc.com/view5/M00/02/3D/wKhkGGZFPSqAfTEGAAHIxNVwW5g4652.jpg)
![江西省吉安市遂州縣達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第3頁](http://file4.renrendoc.com/view5/M00/02/3D/wKhkGGZFPSqAfTEGAAHIxNVwW5g4653.jpg)
![江西省吉安市遂州縣達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第4頁](http://file4.renrendoc.com/view5/M00/02/3D/wKhkGGZFPSqAfTEGAAHIxNVwW5g4654.jpg)
![江西省吉安市遂州縣達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第5頁](http://file4.renrendoc.com/view5/M00/02/3D/wKhkGGZFPSqAfTEGAAHIxNVwW5g4655.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省吉安市遂州縣達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.2.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°3.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=24.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤5.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設(shè)動車速度為每小時x千米,則可列方程為()A. B.C. D.6.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數(shù)圖象是A. B.C. D.7.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當(dāng)三個數(shù)字與所設(shè)定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設(shè)密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.18.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.9.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.10.將三粒均勻的分別標(biāo)有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.11.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<112.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________14.如圖,直線a∥b,∠P=75°,∠2=30°,則∠1=_____.15.化簡:________.16.如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運(yùn)動,點E與點D關(guān)于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時,EF與半圓相切;④若點F恰好落在BC上,則AD=;⑤當(dāng)點D從點A運(yùn)動到點B時,線段EF掃過的面積是.其中正確結(jié)論的序號是.17.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達(dá)式是_____.18.如圖,如果兩個相似多邊形任意一組對應(yīng)頂點P、P′所在的直線都是經(jīng)過同一點O,且有OP′=k·OP(k≠0),那么我們把這樣的兩個多邊形叫位似多邊形,點O叫做位似中心,已知△ABC與△A′B′C′是關(guān)于點O的位似三角形,OA′=3OA,則△ABC與△A′B′C′的周長之比是________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.(1)當(dāng)α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為;(2)如圖2,當(dāng)α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;(3)PA、PB、PC滿足的等量關(guān)系為.20.(6分)如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.(1)求證:四邊形ABEF是平行四邊形;(2)當(dāng)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.21.(6分)“六一”兒童節(jié)前夕,某縣教育局準(zhǔn)備給留守兒童贈送一批學(xué)習(xí)用品,先對紅星小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)該校有_____個班級,補(bǔ)全條形統(tǒng)計圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學(xué)共有60個教學(xué)班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.22.(8分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.23.(8分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.24.(10分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.25.(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.26.(12分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉(zhuǎn)α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.(1)求證:BH=EH;(2)如圖2,當(dāng)點G落在線段BC上時,求點B經(jīng)過的路徑長.27.(12分)老師布置了一個作業(yè),如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學(xué)寫出了如圖2所示的證明過程,老師說該同學(xué)的作業(yè)是錯誤的.請你解答下列問題:能找出該同學(xué)錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點睛】本題主要考查扇形的面積計算,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.2、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.3、C【解析】試題解析:x(x+1)=0,
?x=0或x+1=0,
解得x1=0,x1=-1.
故選C.4、A【解析】
由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點判斷c與2的關(guān)系,然后根據(jù)對稱軸判定b與2的關(guān)系以及2a+b=2;當(dāng)x=﹣1時,y=a﹣b+c;然后由圖象確定當(dāng)x取何值時,y>2.【詳解】①∵對稱軸在y軸右側(cè),∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當(dāng)x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當(dāng)m=1時,有最大值;當(dāng)m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當(dāng)﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當(dāng)a>2時,拋物線向上開口;當(dāng)a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時(即ab>2),對稱軸在y軸左;當(dāng)a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).5、D【解析】解:設(shè)動車速度為每小時x千米,則可列方程為:﹣=.故選D.6、C【解析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減小;②相遇后向相反方向行駛至特快到達(dá)甲地,這段時間兩車距迅速增加;③特快到達(dá)甲地至快車到達(dá)乙地,這段時間兩車距緩慢增大;結(jié)合圖象可得C選項符合題意.故選C.7、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.8、D【解析】
根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【詳解】分兩種情況討論:①當(dāng)k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當(dāng)k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標(biāo)系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.9、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.10、C【解析】
三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標(biāo)有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.11、D【解析】當(dāng)k=1時,原方程不成立,故k≠1,當(dāng)k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.12、D【解析】
解:設(shè)小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.14、45°【解析】過P作PM∥直線a,根據(jù)平行線的性質(zhì),由直線a∥b,可得直線a∥b∥PM,然后根據(jù)平行線的性質(zhì),由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案為45°.點睛:本題考查了平行線的性質(zhì)的應(yīng)用,能正確根據(jù)平行線的性質(zhì)進(jìn)行推理是解此題的關(guān)鍵,注意:兩直線平行,內(nèi)錯角相等.15、【解析】
根據(jù)平面向量的加法法則計算即可【詳解】.故答案為:【點睛】本題考查平面向量的加減法則,解題的關(guān)鍵是熟練掌握平面向量的加減法則,注意平面向量的加減適合加法交換律以及結(jié)合律,適合去括號法則.16、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點E與點D關(guān)于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當(dāng)CD⊥AB時,如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點到直線之間,垂線段最短”可得:點D在線段AB上運(yùn)動時,CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯誤;③當(dāng)AD=2時,連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點E與點D關(guān)于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當(dāng)點F恰好落在上時,連接FB、AF,如圖4所示,∵點E與點D關(guān)于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯誤;⑤∵點D與點E關(guān)于AC對稱,點D與點F關(guān)于BC對稱,∴當(dāng)點D從點A運(yùn)動到點B時,點E的運(yùn)動路徑AM與AB關(guān)于AC對稱,點F的運(yùn)動路徑NB與AB關(guān)于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.故答案為①③⑤.考點:1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).17、y=2(x+3)2+1【解析】
由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達(dá)式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.18、1:1【解析】分析:根據(jù)相似三角形的周長比等于相似比解答.詳解:∵△ABC與△A′B′C′是關(guān)于點O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC與△A′B′C′的周長之比是:OA:OA′=1:1.故答案為1:1.點睛:本題考查的是位似變換的性質(zhì),位似變換的性質(zhì):①兩個圖形必須是相似形;②對應(yīng)點的連線都經(jīng)過同一點;③對應(yīng)邊平行.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)150,(1)證明見解析(3)【解析】
(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉(zhuǎn)110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉(zhuǎn)變換的性質(zhì)、勾股定理和余弦、正弦的關(guān)系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉(zhuǎn)α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用,掌握等邊三角形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、靈活運(yùn)用類比思想是解題的關(guān)鍵.20、(1)證明見解析(2)當(dāng)∠ABC=60°時,四邊形ABEF為矩形【解析】
(1)根據(jù)旋轉(zhuǎn)得出CA=CE,CB=CF,根據(jù)平行四邊形的判定得出即可;(2)根據(jù)等邊三角形的判定得出△ABC是等邊三角形,求出AE=BF,根據(jù)矩形的判定得出即可.【詳解】(1)∵將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四邊形ABEF是平行四邊形;(2)當(dāng)∠ABC=60°時,四邊形ABEF為矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等邊三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四邊形ABEF是平行四邊形,∴四邊形ABEF是矩形.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)和矩形的判定、平行四邊形的判定、等邊三角形的性質(zhì)和判定等知識點,能綜合運(yùn)用知識點進(jìn)行推理是解答此題的關(guān)鍵.21、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】
(1)根據(jù)有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數(shù),再求出有8名留守兒童班級的個數(shù),進(jìn)而補(bǔ)全條形統(tǒng)計圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級數(shù)60乘以(2)中求得的平均數(shù)即可.【詳解】解:(1)該校的班級數(shù)是:2÷2.5%=16(個).則人數(shù)是8名的班級數(shù)是:16﹣1﹣2﹣6﹣2=5(個).條形統(tǒng)計圖補(bǔ)充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學(xué)生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學(xué)生中共有留守兒童1名.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運(yùn)用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.也考查了平均數(shù)、中位數(shù)和眾數(shù)以及用樣本估計總體.22、【解析】
先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,F(xiàn)G∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設(shè)BG=2k,GH=4k,HC=1k,∴DF=2k,F(xiàn)E=1k,∴DE=5k,∴.【點睛】本題考查了平行線的性質(zhì)和三角形相似的判定和相似比.23、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】
(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.24、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解析】
(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=CN,推出四邊形ADCN是平行四邊形即可;(2)根據(jù)∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根據(jù)矩形的判定得出即可.【詳解】證明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四邊形ADCN是平行四邊形,∴CD=AN;(2)解:四邊形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四邊形ADCN是平行四邊形,∴MD=MN=MA=MC,∴AC=DN,∴四邊形ADCN是矩形.【點睛】本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定和性質(zhì),矩形的判定的應(yīng)用,能綜合運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度適中.25、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質(zhì)及中點的定義,可利用AAS證得結(jié)論;
(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合作伙伴入住合同范本
- 2025年勞動合同和社保協(xié)議中工傷保險的細(xì)節(jié)
- 2025年辦公文具用品供貨合同范文
- 2025年基礎(chǔ)設(shè)施建設(shè)監(jiān)理框架協(xié)議
- 2025年養(yǎng)殖戶種牛交易申請協(xié)議范本
- 2025年采購合同簽訂與風(fēng)險控制
- 2025年企業(yè)結(jié)構(gòu)重組協(xié)議書模板
- 2025年住宿生校園安全責(zé)任協(xié)議
- 2025年企業(yè)兼職外貿(mào)業(yè)務(wù)員招聘協(xié)議
- 2025年專利申請輔導(dǎo)合作協(xié)議
- 法律職業(yè)倫理(第二版)完整版教學(xué)課件全書電子講義(最新)
- ESD測試作業(yè)指導(dǎo)書-防靜電手環(huán)
- 船模制作教程(課堂PPT)課件(PPT 85頁)
- 高一(4)班分科后第一次班會課件ppt課件(PPT 29頁)
- 春季開學(xué)安全第一課PPT、中小學(xué)開學(xué)第一課教育培訓(xùn)主題班會PPT模板
- JJG30-2012通用卡尺檢定規(guī)程
- 部編版人教版二年級上冊語文教材分析
- APR版制作流程
- 《C++程序設(shè)計》完整教案
- 美國LM2500艦用燃?xì)廨啓C(jī)
- 《公共政策分析》課件.ppt
評論
0/150
提交評論