《信息工程專業(yè)英語》課件第6章_第1頁
《信息工程專業(yè)英語》課件第6章_第2頁
《信息工程專業(yè)英語》課件第6章_第3頁
《信息工程專業(yè)英語》課件第6章_第4頁
《信息工程專業(yè)英語》課件第6章_第5頁
已閱讀5頁,還剩274頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Unit6DigitalImageProcessing6.1Text6.2ReadingMaterials

6.1Text

FundamentalStepsinDigitalImageProcessing

Itishelpfultodividethematerialcoveredinthefollowingchaptersintothe

twobroadcategories:methodswhoseinputandoutputareimages,andmethodswhoseinputsmaybeimages,butwhoseoutputsareattributesextractedfromthoseimages.ThisorganizationissummarizedinFig6.1.Thediagramdoesnotimplythateveryprocessisappliedtoanimage.Rather,theintentionistoconveyanideaofallthemethodologiesthatcanbeappliedtoimagesfordifferentpurposesandpossiblywithdifferentobjectives.

ImageacquisitionisthefirstprocessshowninFig6.1.Notethatacquisitioncouldbeassimpleasbeinggivenanimagethatisalreadyindigitalform.Generally,theimageacquisitionstageinvolvespreprocessing,suchasscaling.

Fig6.1FundamentalstepsinDigitalImageProcessing

Imageenhancementisamongthesimplestandmostappealingareasofdigitalimageprocessing.Basically,theideabehindenhancementtechniquesistobringoutdetailthatisobscured,orsimplytohighlightcertainfeaturesofinterestinanimage.Afamiliarexampleofenhancementiswhenweincreasethecontrastofanimagebecause“itlooksbetter”.Itisimportanttokeepinmindthatenhancementisaverysubjectiveareaofimageprocessing.

Imagerestorationisanareathatalsodealswithimprovingtheappearanceofanimage.AnexampleofimagerestorationisshowninFig6.2.However,unlikeenhancement,whichissubjective,imagerestorationisobjective,inthesensethatrestorationtechniquestendtobebasedonmathematicalorprobabilisticmodelsofimagedegradation.Enhancement,ontheotherhand,isbasedonhumansubjectivepreferencesregardingwhatconstitutesa“good”enhancementresult.

Fig6.2Exampleofimagerestoration

ColorimageprocessingisanareathathasbeengaininginimportancebecauseofthesignificantincreaseintheuseofdigitalimagesovertheInternet.Waveletsarethefoundationforrepresentingimagesinvariousdegreesofresolution.

Compression,asthenameimplies,dealswithtechniquesforreducingthestoragerequiredtosaveanimage,orthebandwidthrequiredtotransmitit.Althoughstoragetechnologyhasimprovedsignificantlyoverthepastdecade,thesamecannotbesaidfortransmissioncapacity.ThisistrueparticularlyinusesoftheInternet,whicharecharacterizedbysignificantpictorialcontent.Imagecompressionisfamiliar(perhapsinadvertently)tomostusersofcomputersintheformofimagefileextensions,suchasthejpgfileextensionusedintheJPEG(JointPhotographicExpertsGroup)imagecompressionstandard.

Morphologicalprocessingdealswithtoolsforextractingimagecomponentsthatareusefulintherepresentationanddescriptionofshape.Thematerialin

thischapterbeginsatransitionfromprocessesthatoutputimagestoprocesses

thatoutputimageattributes.

Segmentationprocedurespartitionanimageintoitsconstituentpartsorobjects.AnexampleofimagesegmentationisshowninFig6.3.Ingeneral,autonomoussegmentationisoneofthemostdifficulttasksindigitalimageprocessing.Aruggedsegmentationprocedurebringstheprocessalongwaytowardsuccessfulsolutionofimagingproblemsthatrequireobjectstobeidentifiedindividually.Ontheotherhand,weakorerraticsegmentationalgorithmsalmostalwaysguaranteeeventualfailure.Ingeneral,themoreaccurate

thesegmentation,themorelikelyrecognitionistosucceed.

Fig6.3Exampleofimagesegmentation

Representationanddescriptionalmostalwaysfollowtheoutputofasegmentationstage,whichusuallyisrawpixeldata,constitutingeithertheboundaryofaregion(i.e.,thesetofpixelsseparatingoneimageregionfromanother)orallthepointsintheregionitself.Ineithercase,convertingthedatatoaformsuitableforcomputerprocessingisnecessary.Thefirstdecisionthatmustbemadeiswhetherthedatashouldberepresentedasaboundaryorasacompleteregion.

Boundaryrepresentationisappropriatewhenthefocusisonexternalshapecharacteristics,suchascornersandinflections.Regionalrepresentationisappropriatewhenthefocusisoninternalproperties,suchastextureorskeletalshape.Insomeapplications,theserepresentationscomplementeachother.Choosingarepresentationisonlypartofthesolutionfortransformingrawdataintoaformsuitableforsubsequentcomputerprocessing.Amethodmustalsobespecifiedfordescribingthedatasothatfeaturesofinterestarehighlighted.Description,alsocalledfeatureselection,dealswithextractingattributesthatresultinsomequantitativeinformationofinterestorarebasicfordifferentiatingoneclassofobjectsfromanother.

Recognitionistheprocessthatassignsalabel(e.g.,“vehicle”)toanobjectbasedonitsdescriptors.Weconcludeourcoverageofdigitalimageprocessingwiththedevelopmentofmethodsforrecognitionofindividualobjects.

Knowledgeaboutaproblemdomainiscodedintoanimageprocessingsystemintheformofaknowledgedatabase.Thisknowledgemaybeassimpleasdetailingregionsofanimagewheretheinformationofinterestisknowntobelocated,thuslimitingthesearchthathastobeconductedinseekingthatinformation.Theknowledgebasealsocanbequitecomplex,suchasaninterrelatedlistofallmajorpossibledefectsinamaterialsinspectionproblemoranimagedatabasecontaininghigh-resolutionsatelliteimagesofaregioninconnectionwithchange-detectionapplications.Inadditiontoguidingtheoperationofeachprocessingmodule,theknowledgebasealsocontrolstheinteractionbetweenmodules.ThisdistinctionismadeinFig6.1bytheuseofdouble-headedarrowsbetweentheprocessingmodulesandtheknowledgebase,asopposedtosingle-headedarrowslinkingtheprocessingmodules.

Althoughwedonotdiscussimagedisplayexplicitlyatthispoint,itisimportanttokeepinmindthatviewingtheresultsofimageprocessingcantakeplaceattheoutputofanystageinFig6.1.WealsonotethatnotallimageprocessingapplicationsrequirethecomplexityofinteractionsimpliedbyFig6.1.Infact,notevenallthosemodulesareneededinsomecases.Forexample,imageenhancementforhumanvisualinterpretationseldomrequiresuseofanyoftheotherstagesinFig6.1.Ingeneral,however,asthecomplexityofanimageprocessingtaskincreases,sodoesthenumberofprocessesrequiredtosolvetheproblem.

Technicalwordsandphrases

broad adj.顯著的;寬的,遼闊的

attribute n.屬性;特質(zhì)

scaling

n.縮放比例

obscured

v.使含混;變得模糊

restoration n.恢復(fù);復(fù)原;歸還

degradation n.退化;降格,降級

resolution n.分辨率

pictorial adj.圖像的;繪畫的

inadvertently adv.非故意地;不注意地

morphological adj.形態(tài)學(xué)的

rugged adj.崎嶇的;堅固的;高低不平的

erratic

adj.不穩(wěn)定的

raw adj.生的;未加工的

inflection n.曲線,彎曲,變形

texture n.紋理;質(zhì)地

skeletal

adj.骨骼的,像骨骼的

complement vt.補足,補助

quantitative adj.定量的;量的,數(shù)量的

differentiate vi.區(qū)分,區(qū)別

inspection

n.視察,檢查

defect

n.缺點,缺陷;不足之處

interaction

n.相互作用;互動

distinction

n.特性;區(qū)別;差別;榮譽、勛章

explicit

adj.明確的;清楚的;直率的;詳述的

interpretation n.解釋;翻譯;演出

beextractedfrom

從……中提取

contrastofanimage

圖像對比度

mathematicalmodels 數(shù)學(xué)模型

probabilisticmodels 概率模型

autonomoussegmentation 自動分割

partitioninto

劃分

high-resolutionsatelliteimages 高分辨度衛(wèi)星圖像

double-headedarrows

雙箭頭

asopposedto

與……相反

JPEG

(JointPhotographicExpertsGroup)聯(lián)合圖片專家組

6.1.1Exercises

1.PutthePhrasesintoEnglish

(1)數(shù)碼圖像處理; (2)彩色圖像;

(3)存儲技術(shù); (4)傳輸能力;

(5)文件擴展名; (6)分割算法;

(7)原始數(shù)據(jù); (8)后續(xù)處理;

(9)特征選擇; (10)個別目標(biāo)。

2.PutthePhrasesintoChinese

(1)digitalimageprocessing;

(2)imageacquisition;

(3)imageenhancement;

(4)highlightcertainfeatures;

(5)knowledgedatabase;

(6)descriptionofshape;

(7)assignsalabelto;

(8)aproblemdomain.

3.Translation

(1)Basically,theideabehindenhancementtechniquesistobringoutdetailthatisobscured,orsimplytohighlightcertainfeaturesofinterestinanimage.

(2)Inthesensethatrestorationtechniquestendtobebasedonmathematicalorprobabilisticmodelsofimagedegradation.

(3)Aruggedsegmentationprocedurebringstheprocessalongwaytowardsuccessfulsolutionofimagingproblemsthatrequireobjectstobeidentifiedindividually.

(4)Thefirstdecisionthatmustbemadeiswhetherthedatashouldberepresentedasaboundaryorasacompleteregion.

(5)Theknowledgebasealsocanbequitecomplex,suchasaninterrelatedlistofallmajorpossibledefectsinamaterialsinspectionproblemoranimagedatabasecontaininghigh-resolutionsatelliteimagesofaregioninconnectionwithchange-detectionapplications.

(6)Ingeneral,however,asthecomplexityofanimageprocessingtaskincreases,sodoesthenumberofprocessesrequiredtosolvetheproblem.

6.1.2參考譯文

將圖像處理劃分為兩個主要類別:一類是其輸入和輸出都是圖像,另一類,輸入可能是圖像,但是輸出是從圖像中提取的特征屬性。這一結(jié)構(gòu)在圖6.1中做了概括。該圖并不意味著每一個處理步驟都應(yīng)用于一張圖片,其意圖是要說明針對不同目標(biāo)的圖像處理,這些方法都可應(yīng)用其中。

圖像獲取是圖6.1的第一步處理。注意圖像獲取與給出一幅數(shù)字形式的圖像一樣簡單。通常,圖像獲取包括預(yù)處理,如圖像的縮放。

圖像增強是數(shù)碼圖像處理最簡潔和最有吸引力的環(huán)節(jié)?;旧希鰪娂夹g(shù)的基本思路就是顯現(xiàn)那些被模糊了的細節(jié),或通過簡化來突出圖像中某個感興趣的特征。一個關(guān)于圖像增強熟悉的例子:當(dāng)我們增加圖像的對比度,它就會更好看。重要的是要記住,圖像增強是圖像處理中非常主觀的領(lǐng)域。

圖像復(fù)原是改進圖像外觀的環(huán)節(jié)。圖像復(fù)原的例子如圖6.2所示。然而,不像圖像增強是主觀的,圖像復(fù)原是客觀的。從某種意義上說,復(fù)原技術(shù)是基于圖像退化的數(shù)學(xué)模型或概率模型。而圖像增強從另一方面來看,是以人的主觀偏愛為基礎(chǔ)來得到“好”的增強效果。

彩色圖像處理已經(jīng)變得越來越重要,是因為互聯(lián)網(wǎng)上數(shù)碼圖像的應(yīng)用有著顯著的增長。微波就是在各種分辨率下描述圖像的基礎(chǔ)。

壓縮,顧名思義,即減少圖像的存儲量,或者降低傳輸圖像的帶寬。雖然存儲技術(shù)在過去的10年內(nèi)有了顯著提升,但傳輸容量并非如此。以大量圖片內(nèi)容為特征的互聯(lián)網(wǎng)更是如此。圖像壓縮技術(shù)所對應(yīng)的圖像文件擴展名對大多數(shù)計算機用戶來說是很熟悉的(有的也許并不注意),如在JPEG(聯(lián)合圖片專家組)圖像壓縮標(biāo)準(zhǔn)中使用JFG文件擴展名。

形態(tài)學(xué)處理會涉及到提取圖像元素,這些圖像元素在表現(xiàn)和描述形狀方面非常有用。這一章的材料將從輸出圖像處理到輸出圖像特征處理的轉(zhuǎn)換開始。

分割過程是將一幅圖像劃分為組成圖像的各部分或目標(biāo)物,圖像分割的例子如圖6.3所示。通常,自動分割是數(shù)字圖像處理中最為困難的任務(wù)之一。復(fù)雜的分割過程導(dǎo)致成功解決分割問題變得很難,這要求物體被分別識別出來,這種分割成像的問題需要大量的處理工作。另一方面,不健全且缺乏穩(wěn)定的分割算法幾乎總是會導(dǎo)致最終的失敗。通常,分割越準(zhǔn)確,識別越成功。

表示與描述幾乎總是跟隨在分割步驟的輸出后邊,通常這樣的輸出是未加工的像素數(shù)據(jù),其構(gòu)成不是區(qū)域的邊緣(也就是分隔一個圖像區(qū)域和另一個區(qū)域的像素集)就是其區(qū)域本身所有點的集合。無論哪種情況,把數(shù)據(jù)轉(zhuǎn)換成適合計算機處理的形式都是必要的。首先,必須確定數(shù)據(jù)是被表現(xiàn)為邊界還是整個區(qū)城。當(dāng)注意的焦點是外部形狀特性時,邊界表示是合適的,如拐角和曲線。當(dāng)注意的焦點是內(nèi)部特性時,則區(qū)域表示是合適的,如紋理或骨骼形狀。某些應(yīng)用中,這些表示相輔相成的。選擇某種表現(xiàn)方式僅是把原始數(shù)據(jù)轉(zhuǎn)換為適合計算機后續(xù)處理形式過程中的一部分。為了通過描述數(shù)據(jù)使感興趣的特征表現(xiàn)得更明顯,還必須確定一種方法。描述也叫特征選擇,涉及提取特征,該特征是某些感興趣的定量信息或是區(qū)分一組目標(biāo)與其他目標(biāo)的基礎(chǔ)。

識別是在目標(biāo)描述基礎(chǔ)上給目標(biāo)賦予標(biāo)簽(例如“車輛”)的過程。我們用個別目標(biāo)識別的先進方法來推導(dǎo)數(shù)字圖像處理的覆蓋范圍。

問題域是將問題以知識庫的形式編碼并裝入某個圖像處理系統(tǒng)。這一過程就如詳述感興趣的信息位于某個圖像區(qū)域那樣簡單,這樣限制性的搜索就被引導(dǎo)到要尋找的信息處。知識庫也可能相當(dāng)復(fù)雜,如材料檢測問題或者圖像數(shù)據(jù)庫中所有主要缺陷的相關(guān)列表,數(shù)據(jù)庫包含變化檢測應(yīng)用相關(guān)區(qū)域的高分辨衛(wèi)星圖像。除了引導(dǎo)每個處理模塊的操作,知識庫還要控制模塊之間的交互。這種特性由圖6.1中的處理模塊和知識庫之間的雙向箭頭表示,這與單向箭頭連接處理模塊截然相反。

此時此刻我們雖然沒有明確地討論圖像顯示,但要記住觀察圖6.1中任何階段輸出處的圖像處理結(jié)果是很重要的。我們還注意到,不是所有的圖像處理都需要圖6.1所給出的復(fù)雜交互。事實上,在某些情況下并不是所有模塊都需要。例如,為了人的視覺解釋,圖像增強很少需要使用圖6.1中的其他任何步驟。然而,通常隨著圖像處理任務(wù)復(fù)雜度的增加,則需要做更多處理才能使問題得到解決。

6.2ReadingMaterials

6.2.1PyramidMethodsinImageProcessing

Digitalimageprocessingisbeingusedinmanydomainstoday.Inimageenhancement,forexample,avarietyofmethodsnowexistforremovingimagedegradationsandemphasizingimportantimageinformation,andincomputergraphics,digitalimagescanbegenerated,modified,andcombinedforawidevarietyofvisualeffects.Indatacompression,imagesmaybeefficientlystoredandtransmittediftranslatedintoacompactdigitalcode.Inmachinevision,automaticinspectionsystemsandrobotscanmakesimpledecisionsbasedonthedigitizedinputfromatelevisioncamera.

Thetaskofdetectingatargetpatternthatmayappearatanyscalecanbeapproachedinseveralways.Twoofthese,whichinvolveonlysimpleconvolutions,areillustratedinFig6.4.Severalcopiesofthepatterncanbeconstructedatincreasingscales,andtheneachisconvolvedwiththeimage.Alternatively,apatternoffixedsizecanbeconvolvedwithseveralcopiesoftheimagerepresentedatcorrespondinglyreducedresolutions.Thetwoapproachesyieldequivalentresults,providedcriticalinformationinthetargetpatternisadequatelyrepresented.However,thesecondapproachismuchmoreefficient:

agivenconvolutionwiththetargetpatternexpandedinscalebyafactorswillrequires4morearithmeticoperationsthanthecorrespondingconvolutionwiththeimagereducedinscalebyafactorofs.Thiscanbesubstantialforscalefactorsintherange2to32,acommonlyusedrangeinimageanalysis.

Fig6.4Twomethodsofsearchingforatargetpatternovermanyscales

Theimagepyramidisadatastructuredesignedtosupportefficientscaledconvolutionthroughreducedimagerepresentation.Itconsistsofasequenceofcopiesofanoriginalimageinwhichbothsampledensityandresolutionaredecreasedinregularsteps.AnexampleisshowninFig6.5a.Thesereducedresolutionlevelsofthepyramidarethemselvesobtainedthroughahighlyefficientiterativealgorithm.Thebottom,orzerolevelofthepyramid,G0,isequaltotheoriginalimage.

Thisislowpassfilteredandsubsampledbyafactoroftwotoobtainthenextpyramidlevel,Gl.GlisthenfilteredinthesamewayandsubsampledtoobtainG2.Furtherrepetitionsofthefilter/subsamplestepsgeneratetheremainingpyramidlevels.Tobeprecise,thelevelsofthepyramidareobtainediterativelyasfollows.For0<l<N:

(6-2-1)

However,itisconvenienttorefertothisprocessasastandardREDUCEoperation,andsimplywrite:Gl=REDUCE[Gl-1].

Wecalltheweightingfunctionω(m,n)the“generatingkernel”.Forreasonsofcomputationalefficiencythisshouldbesmallandseparable.Afive-tapfilterwasusedtogeneratethepyramidinFig6.5.

Fig6.5TheGaussianPyramidexpandedtothesizeoftheoriginalimage

PyramidconstructionisequivalenttoconvolvingtheoriginalimagewithasetofGaussian-likeweightingfunctions.These“equivalentweightingfunctions”forthreesuccessivepyramidlevelsareshowninFig6.6.Notethatthefunctionsdoubleinwidthwitheachlevel.Theconvolutionactsasalowpassfilterwiththebandlimitreducedcorrespondinglybyoneoctavewitheachlevel.BecauseofthisresemblancetotheGaussiandensityfunctionwerefertothepyramidoflowpassimagesasthe“Gaussianpyramid.”

Fig6.6Equivalentweightingfunctions

Bandpass,ratherthanlowpass,imagesarerequiredformanypurposes.ThesemaybeobtainedbysubtractingeachGaussian(lowpass)pyramidlevelfromthenextlowerlevelinthepyramid.Becausetheselevelsdifferintheirsampledensityitisnecessarytointerpolatenewsamplevaluesbetweenthoseinagivenlevelbeforethatlevelissubtractedfromthenext-lowerlevel.InterpolationcanbeachievedbyreversingtheREDUCEprocess.WecallthisanEXPANDoperation.LetGl,kbetheimageobtainedbyexpandingGlktimes.ThenGl,k=EXPAND[Gl,k-1]or,tobeprecise,Gl,0=Gl,andfork?>

0,

(6-2-2)

Hereonlytermsforwhich(2i+m)/2and(2j+n)/2areintegerscontributetothesum.Theexpandoperationdoublesthesizeoftheimagewitheachiteration,sothatGl,1,isthesizeofGl,1,andGl,1isthesamesizeasthatoftheoriginalimage.ExamplesofexpandedGaussianpyramidlevelsareshowninFig6.7.

Fig6.7LevelsoftheGaussianpyramidexpandedtothesizeoftheoriginalimage

Thelevelsofthebandpasspyramid,L0,L1,...,LN,maynowbespecifiedintermsofthelowpasspyramidlevelsasfollows:

(6-2-3)

ThefirstfourlevelsareshowninFig6.8.

Fig6.8Thelevelsofthebandpasspyramid,L0,L1,L2,L3

JustasthevalueofeachnodeintheGaussianpyramidcouldhavebeenobtaineddirectlybyconvolvingaGaussianlikeequivalentweightingfunctionwiththeoriginalimage,eachvalueofthisbandpasspyramidcouldbeobtainedbyconvolvingadifferenceoftwoGaussianswiththeoriginalimage.ThesefunctionscloselyresembletheLaplacianoperatorscommonlyusedinimageprocessing.Forthisreasonwerefertothebandpasspyramidasa“Laplacianpyramid.”

AnimportantpropertyoftheLaplacianpyramidisthatitisacompleteimagerepresentation:thestepsusedtoconstructthepyramidmaybereversedtorecovertheoriginalimageexactly.Thetoppyramidlevel,LN,isfirstexpandedandaddedtoLN-1toformGN-1thenthisarrayisexpandedandaddedtoLN-2torecoverGN-2,andsoon.Alternatively,wemaywrite:

(6-2-4)

Thepyramidhasbeenintroducedhereasadatastructureforsupportingscaledimageanalysis.Thesamestructureiswellsuitedforavarietyofotherimageprocessingtasks.Itcanbeshownthatthepyramid-buildingproceduresdescribedherehavesignificantadvantagesoverotherapproachestoscaledanalysisintermsofbothcomputationcostandcomplexity.ThepyramidslevelsareobtainedwithfewerstepsthroughrepeatedREDUCEandEXPANDoperationsthanispossiblewiththestandardFFT.Furthermore,directconvolutionwithlargeequivalentweightingfunctionsrequires20to30bitarithmetictomaintainthesameaccuracyasthecascadeofconvolutionswiththesmallgeneratingkernelusingjust8-bitarithmetic.

6.2.2ImageCompressionandCoding

Wepresentanalgorithmforimagecompressionbasedonanimageinpaintingmethod.Firsttheimageregionsthatcanbeaccuratelyrecoveredarelocated.Then,toreducethedata,informationofsuchregionsisremoved.Theremainingdatabesidesessentialdetailsforrecoveringtheremovedregionsareencodedtoproduceoutputdata.Atthedecoder,aninpaintingmethodisappliedtoretrieveremovedregionsusinginformationextractedattheencoder.

Theimageinpaintingtechniqueutilizespartialdifferentialequations(PDEs)forrecoveringinformation.Itisdesignedtoachievehighperformanceintermsofimagecompressioncriteria.Thisalgorithmwasexaminedforvariousimages.Ahighcompressionratioof1:40wasachievedatanacceptablequality.ExperimentalresultsshowedattainablevisiblequalityimprovementatahighcompressionratiocomparedwithJPEG.

Compressionisacceptablefornaturalimagesasalargeamountofredundancyisincludedinsuchimages.Ahighcompressionratiocanbeachievedbyeliminatingtheseredundancies,butatthecostofsomeinformationloss.Uptonow,greatachievementshavebeenmadeinimagecompression.State-of-the-artmethodssuchasJPEG(PennebakerandMitchell,1992)andJPEG2000(TaubmanandMarcellin,2002)efficientlyexploitstatisticalredundanciesamongpixelsandachievehighcompressionratios.

Acom-monframeworkinalmostalllossyimagecompressionmethodsisimagetransformationfollowedbyquantizationandcoding.Incontrast,JPEGandJPEG2000usethediscretecosinetransform(DCT)andwavelettransform,respectively.Informationlosscausesdecreaseinthequalityofreconstructedimages,especiallyathighcompressionratios.Toimproveperceptualvisualquality,HontschandKaram(2000)andMaloetal.(2006)incorporatedthehumanvisionsystem(HVS)propertiesincompressionschemes.

Thedominanttypeofredundancywithinimagescomesfromtheirrepresentationprocedure.Eachdigitalimageiscomposedofdiscretepoints,calledpixels.Thevaluerelevanttoeachpixelistheresultofsamplingfromlightorcolorintensityintheoriginalimagedomain.Naturalimagesconsistofseparateareasindicatingtheobjectsurfacesorsceneries.Be-causethelightintensityandcolorinsuchareasareapproximatelyconstant,therelevantvaluesforpixelsarehighlycorrelated.Everypixelinsuchareasislikelytobeofthesameorveryclosevaluecomparedwiththeadjacentpixels.Inthiscase,imagessufferfromahighlevelofspatialcorrelation.

Themostsignificantinformationwithinanimageislocatedintheboundaryregionsoredges.Infact,theboundaryofaregionnotonlyspecifiesitsoverallshape,butalsoshowshowpixelvalueschangefromneighboringregionstotheinnerregionsofinterest.Asaresult,itispossibletoretrievetheinnerareasusingpixelslocatedontheboundaries.Therefore,boundariesoredgesarealltherequiredinformationfordisplayinganimage.Fig6.9

clarifiesthisconcept.Fig6.9(a)showsasyntheticimagecomposedofthreedifferentregions.

Fig6.9(b)showstheboundariesofregionsinFig6.9(a).Certainly,bydiffusingtheinformationofboundariesshowninFig6.9(b)intothecorrespondingregion,theimageinFig6.9(a)willbere-covered.InFig6.9(b),theboundaryregionsarepreservedwith9pixelswidth.Also,theinformationrelatedtootherregionsisremoved.Itisevidentthatonly2pixelsratherthan9areadequateforrepresentingboundaryregions.

(a)Animagewiththreeregions;

(b)Extractededgesofthesameimagewith9pixelswidthFig6.9

Thevariationinvaluesofpixelsorthogonaltotheedgesissignificant.Hence,areasintheneighbor-hoodofedgesmaybeconsideredasessentialimageinformation.Ontheotherhand,whilemovingalongtheedgedirection,nosignificantchangesinpixelvalueswillbeobserved.Movingfurthertotheinnerpointsoftheboundarieswillresultinaconsiderablecorrelationforpixelvalues.Edgesalsorepresentsomeothernecessaryinformationincludingshapes.Redundanciesrelatedtothecorrelationalongtheedgedirectionmayalsobeexploitedviaextractingshapeinformationfrompixelvaluesinboundaryregions.

Pixelvaluesattheendpointsofanedgewillbeusedforrecoveringtheentireedgeandboundaryregion.Ofcourse,itholdstrueifthelocationoftheedgepointsisknown.Inthispaper,theedgeendpointiscalledthe'sourcepoint'.Inordertorecoverboundaryregionsandpixelslocatedperpendiculartotheedgedirection,samplesofsourcepointsshouldbeprovided.Thesesamplesshouldcomefromdifferentareasateachsideoftheedge.Fig6.10indicatesedgelocationsandsourcepointsfortheimageshowninFig6.10(a),zoomedversionisshowninFig6.10(b).

(a)AsourcepointsandboundariesforFig6.9a(theblacklinesstandforedges)Fig6.10(b)ZoomedversionofFig6.9aFig6.10

ZoomedversionofaJPEG2000istoadapttothecontinuousdevelopmentofimagecompressionapplications,theemergenceofnewstillimagecompressionstandard.JPEG2000imagecodingsystemdescribestherealizationoftheprocess,ofwhichthebasicalgorithmusedisdescribedandkeytechnologies,introducedthenewstandardfeaturesandapplications,anditsperformanceisanalyzed.Withtherapidgrowthofmultimediaapplicationsandnetworkscontinuestodevelop,thetraditionalJPEGcompressiontechnologyhasbeenunabletomeetthepeople'sdigitalmultimediaimagedatarequirements,amorepowerfulandefficientsuperiorstillimagecompressionstandardhasbeenreferredtothedevelopmentagenda,thisisaJPEG2000.

JPEG(JointPhotographicExpertsGroup)istheInternationalOrganizationforStandardization(ISO)developedundertheleadershipofthecommitteestillimagecompressionstandard,thefirstsetofinternationalstillimagecompressionstandardISO10918-1(JPEG)isthatestablishedbytheCommittee.AstheexcellentqualityJPEG,sothatwithinafewyearshewasagreatsuccess,iswidelyusedinthefieldofInternetanddigitalcamerasonthesite80%haveadoptedtheJPEGimagecompressionstandard.

However,thecurrentJPEGstillimagecompressionstandard,withmid-rangeandhigh-bit-rateontheratedistortioncharacteristicsofagood,butinthecontextoflowbitrate,therewillbeobviousblockingeffects,itsqualityhasbecomeunacceptable.JPEGcannotbeprovidedinasinglebitstreamlossyandlosslesscompression,andcannotsupportmorethan64×64Koftheimagecompression.Atthesametime,despitethecurrentJPEGstandardhasarequirementtorestarttheinterval,butwhenbiterrorsencounteredwhentheimagequalitywillbeseriouslydamaged.

Tosolvetheseproblems,sinceMarch1997onwards,JPEGimagecompressionstandardscommitteestartedtodevelopanewgenerationofimagecompressionstandardtoaddresstheseproblems.InMarch2000theTokyoconferencetoidentifyanewgenerationofcolorstillimagecodingstandardJPEG2000imagecompressioncodingalgorithm.

JPEG2000advantagesofitsuniquemakeupfordeficienciesintheexistingJPEGstandard.Discretewavelettransformalgorithm,theimagecanbeconvertedintoaseriesofpixelscanbemoreeffectivememorymodulesub-band,therefore,JPEG2000imagecompressionformatthantheJPEGcanbebasedonthecurrentre-increasedby10%to30%,andthecompressedimageappearstomoredelicatesmooth.Inotherwords,onlineviewingofimagesusingJPEG2000compression,notonlytodownloadspeedsfasterthanusingJPEGformat,nearly30%,butthequalitywillbebetter.

ForthecurrentJPEGstandard,inthesamecompressedstreamcannotprovidelossyandlosslesscompression,whileinJPEG2000systems,byselectingtheparameters,canbelossyandlosslessimagecompression,imagequalitytomeetthedemandingmedicalimages,imagelibrary,etc.processingneeds.NowthenetworkisbasedonJPEGimagedownload“block”transfers,soitcanonlybedisplayedlinebyline,whiletheuseofJPEG2000imageformatsupportforprogressivetransmission(ProgressiveTransmission),whichallowstheimageresolutionorpixelsinaccordancewiththerequiredaccuracyofreconstruction,theuserneededforimagetransmissio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論