![《信息工程專業(yè)英語》課件第5章_第1頁](http://file4.renrendoc.com/view5/M00/29/3F/wKhkGGZIcbaAXCCNAACnuS16LYU338.jpg)
![《信息工程專業(yè)英語》課件第5章_第2頁](http://file4.renrendoc.com/view5/M00/29/3F/wKhkGGZIcbaAXCCNAACnuS16LYU3382.jpg)
![《信息工程專業(yè)英語》課件第5章_第3頁](http://file4.renrendoc.com/view5/M00/29/3F/wKhkGGZIcbaAXCCNAACnuS16LYU3383.jpg)
![《信息工程專業(yè)英語》課件第5章_第4頁](http://file4.renrendoc.com/view5/M00/29/3F/wKhkGGZIcbaAXCCNAACnuS16LYU3384.jpg)
![《信息工程專業(yè)英語》課件第5章_第5頁](http://file4.renrendoc.com/view5/M00/29/3F/wKhkGGZIcbaAXCCNAACnuS16LYU3385.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Unit5UnderstandingDigitalSignalProcessing5.1Text5.2ReadingMaterials
5.1Text
Overviewofdigitalsignalprocessing
1.DigitalRepresentationofaWaveform
Adigitalsignalprocessingsystemtakesacontinuoussoundwaveasinput,feedsitthroughananaloglow-passfilter(ananti-aliasingfilter)toremoveallfrequenciesabovehalfthesamplingrate(seeNyquist’ssamplingtheorem).
ThisAnalog-to-DigitalConverter(ADC)filtersandsamplesthewaveamplitudeatequally-spacedtimeintervalsandgeneratesasimplelistoforderedsamplevaluesinsuccessivememorylocationsinthecomputer.Thesamplevalues,representingamplitudes,areencodedusingsomenumberofbitsthatdetermineshowaccuratelythesamplesaremeasured.TheProcessorisacomputerthatappliesnumericaloperationstothesampledwaves.InFig5.1,itseemstheprocessorhaslow-passfilteredthesignal,thusremovingthejumpyirregularitiesintheinputwave.
WhenthesignalisconvertedbackintoanaudiosignalbytheDigital-AnalogConverter(DAC),therewillbejaggedirregularitiesthatarequantizationerrors.Ofcourse,thesewilllieabovetheNyquistfrequency,sothenewanalogsignal(backinrealtime)needsanotheranalog,low-passfilteronoutputsinceeverythingabovetheNyquistfrequencyisanoisyartefact.
Fig5.1Adigitalsignalprocessingsystemandwaves
2.Samplingtheorem
‘Nyquistfreq’=(samplingrate)/2
Aliasingproblem(frequenciesaboveNyquistfrequencygetmappedtolowerfrequencies).ThreekindsofwaveformisshowninFig5.2.Theleftmostwavebelowhas8samplespercycle(thatis,thefrequencyis1/8thesamplerate(state)).Themiddlecurveisthehighestfrequencythatcanberepresentedbythissamplerate.Therightmostfigureismuchtoofast,sothesampledwavewillsoundlike(bealiasedas)theslowdottedcurve(whichisidenticaltotheleftmostcurve).
Fig5.2Threekindsofwaveform
Solution:applyinputfilterbeforesamplingtoremoveallunwantedinputs.AnyenergyremainingabovetheNyquistfrequencywillbemappedontolowerfrequencies.Ofcourse,onmoderndigitalequipment,thisfilteringistakencareofforyou.
3.Quantizationofamplitude(limitedsetofamplitudevalues)
Whenthesampledsignalisconvertedbackintorealtime,ofcourse,thereareonlyassignedvaluesspecifiedatthesamplepoints.Theoutputsignalwilljustbeflatuntilthenextsamplecomesalong.Theseflatspotswillbeperceivedbyalistenerasahigh-frequencysignal(abovetheNyquistfreq),butitwillbenoise.
Sotheredcurve(Fig5.3)belowmustbesmoothed(lowpassfiltered)intothegreencurvebelowinordertosoundright.Ofcourse,ifthesamplerateisthatofthecommercialCDstandard,thenthisnoisewillbeabovethelimitsofhumanhearing—soyourownearcanserveasthelowpassquantizationfilter.Indeed,sinceloudspeakersdonotnormallyproducesoundsabove20kH,theytoocanalsoserveasthislowpassoutputfilter.
Fig5.3Redcurveissmoothedintogreencurve
Technicalwordsandphrases
overview n.綜述;概觀
waveform n.波形
analog adj.模擬的
anti- pref.表示“反對,抵抗”之義
amplitude
n.振幅
processor n.處理器
irregularity n.不規(guī)則;無規(guī)律;不整齊
jag vt.使成鋸齒狀;使成缺口
artefact n.人工制品,加工品
interval
n.間隔;間距
alias n.別名,化名adv.別名叫;化名為
curve n.曲線
dot n.點(diǎn),圓點(diǎn)
flat vt.使變平
perceive
vt.感覺;理解vi.感到,感知;認(rèn)識到
loudspeakern.喇叭,揚(yáng)聲器;擴(kuò)音器
alow-passfilter 低通濾波器
jumpyirregularities 不規(guī)則跳動
inputwave 輸入波
Samplingtheorem 采樣定理
getmappedto 映射到
soundlike
被看做
bealiassedas 被混疊為
dottedcurve 虛線
bemappedonto 標(biāo)示到
quantizationofamplitude 振幅的量化
limitedset
極限設(shè)置
ADC(Analog-to-DigitalConverter) 模擬-數(shù)字轉(zhuǎn)換
DAC(Digital-AnalogConverter) 數(shù)字-模擬轉(zhuǎn)換
Nyquist奈奎斯特,美國物理學(xué)家。1917年獲得耶魯大學(xué)哲學(xué)博士學(xué)位。奈奎斯特為近代信息理論做出了突出貢獻(xiàn)。他總結(jié)的奈奎斯特采樣定理是信息論,特別是通信與信號處理學(xué)科中的一個(gè)重要基本結(jié)論。
5.1.1Exercises
1.PutthePhrasesintoEnglish
(1)數(shù)字信號處理系統(tǒng);
(2)連續(xù)聲波;
(3)模擬低通濾波器;
(4)采樣值;
(5)音頻信號; (6)量化錯(cuò)誤。
2.PutthePhrasesintoChinese
(1)ananti-aliasingfilter;
(2)moderndigitalequipment;
(3)orderedsamplevalues;
(4)equally-spacedtimeintervals;
(5)samplepoints;
(6)lowpassquantizationfilter;
(7)limitsofhumanhearing;
(8)jumpyirregularities.
3.Translation
(1)Thesamplevalues,representingamplitudes,areencodedusingsomenumberofbitsthatdetermineshowaccuratelythesamplesaremeasured.
(2)WhenthesignalisconvertedbackintoanaudiosignalbytheDigital-AnalogConverter(DAC),therewillbejaggedirregularities(shownbelowonthispage)thatarequantizationerrors.
(3)Therightmostfigureismuchtoofast,sothesampledwavewillsoundlike(bealiasedas)theslowdottedcurve(whichisidenticaltotheleftmostcurve).
(4)Theoutputsignalwilljustbeflatuntilthenextsamplecomesalong.
(5)IfthesamplerateisthatofthecommercialCDstandard,thenthisnoisewillbeabovethelimitsofhumanhearing--soyourownearcanserveasthelowpassquantizationfilter.
5.1.2參考譯文
數(shù)字信號處理概述
1.波形的數(shù)字表示
數(shù)字信號處理系統(tǒng)將連續(xù)聲波作為輸入信號,把這些信號送入模擬低通濾波器(抗混疊濾波器)以消除所有高于采樣率一半以上的頻率(見奈奎斯特采樣定理)。這種模擬-數(shù)字轉(zhuǎn)換器(ADC)在間距相等的時(shí)間間隔內(nèi)過濾和采樣波的振幅,并在計(jì)算機(jī)中的連續(xù)內(nèi)存位置生成一個(gè)有序樣本值的簡單列表。采樣值即振幅,由一些決定如何準(zhǔn)確測量樣品的位數(shù)編碼而成。處理器是一臺適用于采樣波數(shù)值運(yùn)算的電腦。
如圖5.1所示,處理器有低通濾波信號的功能,從而消除了輸入波的不規(guī)則跳動。當(dāng)信號被數(shù)字-模擬轉(zhuǎn)換器(DAC)轉(zhuǎn)換成音頻信號后,會有鋸齒狀的不規(guī)則波形即量化錯(cuò)誤。當(dāng)然,這些都將基于之前提到的奈奎斯特頻率,所以新的模擬信號(實(shí)時(shí))在輸出端需要另一個(gè)模擬低通濾波器,因?yàn)樗懈哂谀慰固仡l率的都是嘈雜現(xiàn)象。
2.采樣定理
奈奎斯特頻率?=?采樣頻率/2
混疊問題(奈奎斯特頻率以上的頻率映射到較低的頻率)。三種波形如圖5.2所示。圖中最左邊的波形每個(gè)周期有8個(gè)樣本(即頻率為1/8的采樣率(srate))。中間波形的頻率是最高的,可以通過這個(gè)采樣率來表示。最右邊的波形頻率特別高,所以采樣波將被看做(被混疊為)緩慢的虛線(這與最左邊的曲線相同)。
解決:在采樣以前使用輸入濾波器消除所有不需要的輸入。任何高于奈奎斯特頻率的能量將被映射到較低的頻率。當(dāng)然,在現(xiàn)代的數(shù)字設(shè)備上,濾波器會自動完成這些工作。
3.振幅的量化(振幅值的極限設(shè)置)
當(dāng)然,當(dāng)采樣信號被轉(zhuǎn)化回實(shí)時(shí)信號時(shí),只在采樣點(diǎn)分配指定值。輸出信號將較為平緩直到下一個(gè)采樣進(jìn)來。這些平緩的信號將被收聽者視為一個(gè)高頻信號(高于奈奎斯特頻率),但它也可能是噪音。因此,為了使收聽者收到正常信號,圖5.3中的紅色曲線必須平滑過渡到(低通濾波)綠色曲線。當(dāng)然,如果采樣率是商業(yè)CD標(biāo)準(zhǔn),那么這種噪音會高于人類聽覺的限制,所以你自己的耳朵可以作為低通量化濾波器。事實(shí)上,由于揚(yáng)聲器不再產(chǎn)生20kHz以上的聲音,它們也能作為低通輸出濾波器。
5.2ReadingMaterials
5.2.1TheDiscrete-timeFourierTransform
Inmathematics,thediscrete-timeFouriertransform(DTFT)(Fig5.4)isoneofthespecificformsofFourieranalysis.Assuch,ittransformsonefunctionintoanother,whichiscalledthefrequencydomainrepresentation,orsimplythe“DTFT”,oftheoriginalfunction(whichisoftenafunctioninthetime-domain).ButtheDTFTrequiresaninputfunctionthatisdiscrete.Suchinputsareoftencreatedbysamplingacontinuousfunction,likeaperson’svoice.Fig5.4Fouriertransforms
TheDTFTfrequency-domainrepresentationisalwaysaperiodicfunction.Sinceoneperiodofthefunctioncontainsalloftheuniqueinformation,itissometimesconvenienttosaythattheDTFTisatransformtoa“finite”frequency-domain(thelengthofoneperiod),ratherthantotheentirerealline.ItisPontryagindualtotheFourierseries,whichtransformsfromaperiodicdomaintoadiscretedomain.
Definition
Givenadiscretesetofrealorcomplexnumbers:(integers),thediscrete-timeFouriertransform(orDTFT)ofisusuallywritten:
(5-2-1)
Relationshiptosampling
Oftenthesequencerepresentsthevalues(akasamples)ofacontinuous-timefunction,,atdiscretemomentsintime:,whereTisthesamplinginterval(inseconds),and
1/T?=?fsisthesamplingrate(samplespersecond).ThentheDTFTprovidesanapproximationofthecontinuous-timeFouriertransform:
(5-2-2)
Tounderstandthis,considerthePoissonsummationformula,whichindicatesthataperiodicsummationoffunctionX(f)canbeconstructedfromthesamplesoffunctionx(t)Theresultis:
(5-2-3)
Theright-handsidesofEq.2andEq.1areidenticalwiththeseassociations:
(5-2-4)
(5-2-5)
XT(f)comprisesexactcopiesofX(f)thatareshiftedbymultiplesof?sandcombinedbyaddition.Forsufficientlylarge?s,thek=0termcanbeobservedintheregion[??s/2,?s/2]withlittleornodistortion(aliasing)fromtheotherterms.
Periodicity
Samplingx(t)causesitsspectrum(DTFT)tobecomeperiodic.Intermsofordinaryfrequency,f(cyclespersecond),theperiodisthesamplerate,fs.Intermsofnormalizedfrequency,f/fs(cyclespersample),theperiodis1.Andintermsof(radianspersample),theperiodis2π,whichalsofollowsdirectlyfromtheperiodicityof.Thatis:
(5-2-6)
wherebothnandkarearbitraryintegers.Therefore:
(5-2-7)
ThepopularalternatenotationX(eiω)fortheDTFTX(ω):
1.highlightstheperiodicityproperty.
2.HelpsdistinguishbetweentheDTFTandunderlyingFouriertransformofx(t);thatis,X(f)(orX(ω)).
3.emphasizestherelationshipoftheDTFTtotheZ-transform.
However,itsrelevanceisobscuredwhentheDTFTisformedbythefrequencydomainmethod(superposition),asdiscussedabove.Sothenotationisalsocommonlyused,asinthetabletofollow.
Inversetransform
Thefollowinginversetransformsrecoverthediscrete-timesequence:
(5-2-8)
TheintegralsspanonefullperiodoftheDTFT,whichmeansthatthex[n]samplesarealsothecoefficientsofaFourierseriesexpansionoftheDTFT.Infinitelimitsofintegrationchangethetransformintoacontinuous-timeFouriertransform[inverse],whichproducesasequenceofDiracimpulses.Thatis:
(5-2-9)
FIRfiltersarefiltershavingatransferfunctionofapolynomialinz-andisanall-zerofilterinthesensethatthezeroesinthez-planedeterminethefrequencyresponsemagnitudecharacteristic.TheztransformofaN-pointFIRfilterisgivenby
(5-2-10)
FIRfiltersareparticularlyusefulforapplicationswhereexactlinearphaseresponseisrequired.TheFIRfilterisgenerallyimplementedinanon-recursivewaywhichguaranteesastablefilter.FIRfilterdesignessentiallyconsistsoftwoparts:
(i)approximationproblem.
(ii)realizationproblem.
TheWindowMethod
Inthismethod,thedesiredfrequencyresponsespecificationHd(ω),correspondingunitsampleresponsehd(n)isdeterminedusingthefollowingrelation:
-∞≤n≤∞
(5-2-11)
Where
(5-2-12)
Ingeneral,unitsampleresponsehd(n)obtainedfromtheaboverelationisinfiniteinduration,soitmustbetruncatedatsomepointsayn?=M-1toyieldanFIRfilteroflengthM(i.e.0toM-1).Thistruncationofhd(n)tolengthM-1issameasmultiplyinghd(n)bytherectangularwindowdefinedas:
w(n)=10≤n≤M-1
0otherwise
(5-2-13)
ThustheunitsampleresponseoftheFIRfilterbecomes:
h(n)?=?hd(n)w(n)?
=
hd(n)0≤n≤M-1
=?0otherwise
?(5-2-14)
Now,themultiplicationofthewindowfunctionw(n)withhd(n)isequivalenttoconvolutionofHd(ω)withW(ω),whereW(ω)isthefrequencydomainrepresentationofthewindowfunction:
(5-2-15)
ThustheconvolutionofHd(ω)withW(ω)yieldsthefrequencyresponseofthetruncatedFIRfilter:
(5-2-16)
Thefrequencyresponsecanalsobeobtainedusingthefollowingrelation:
(5-2-17)
Butdirecttruncationofhd(n)toMtermstoobtainh(n)leadstotheGibbsphenomenoneffectwhichmanifestsitselfasafixedpercentageovershootandripplebeforeandafteranapproximateddiscontinuityinthefrequencyresponseduetothenon-uniformconvergenceofthefourierseriesatadiscontinuity.Thusthefrequencyresponseobtainedbyusing(8)containsripplesinthefrequencydomain.
Inordertoreducetheripples,insteadofmultiplyinghd(n)witharectangularwindoww(n),hd(n)ismultipliedwithawindowfunctionthatcontainsataperanddecaystowardzerogradually,insteadofabruptlyasitoccursinarectangularwindow.Asmultiplicationofsequenceshd(n)andw(n)intimedomainisequivalenttoconvolutionofHd(ω)andW(ω)inthefrequencydomain,ithastheeffectofsmoothingHd(ω).
TheseveraleffectsofwindowingtheFouriercoefficientsofthefilterontheresultofthefrequencyresponseofthefilterareasfollows:
(i)AmajoreffectisthatdiscontinuitiesinH(ω)becometransitionbandsbetweenvaluesoneithersideofthediscontinuity.
(ii)Thewidthofthetransitionbandsdependsonthewidthofthemainlobeofthefrequencyresponseofthewindowfunction,w(n)i.e.W(ω).
(iii)Sincethefilterfrequencyresponseisobtainedviaaconvolutionrelation,itisclearthattheresultingfiltersareneveroptimalinanysense.
(iv)AsM(thelengthofthewindowfunction)increases,themainlobewidthofW(ω)isreducedwhichreducesthewidthofthetransitionband,butthisalsointroducesmorerippleinthefrequencyresponse.
(v)Thewindowfunctioneliminatestheringingeffectsatthebandedgeanddoesresultinlowersidelobesattheexpenseofanincreaseinthewidthofthetransitionbandofthefilter.
TheFrequencySamplingTechnique
Inthismethod,thedesiredfrequencyresponseisprovidedasinthepreviousmethod.NowthegivenfrequencyresponseissampledatasetofequallyspacedfrequenciestoobtainNsamples.Thus,samplingthecontinuousfrequencyresponseHd(ω)atNpointsessentiallygivesustheN-pointDFTofHd(2pnk/N).ThusbyusingtheIDFTformula,thefiltercoefficientscanbecalculatedusingthefollowingformula:
(5-2-18)
NowusingtheaboveN-pointfilterresponse,thecontinuousfrequencyresponseiscalculatedasaninterpolationofthesampledfrequencyresponse.Theapproximationerrorwouldthenbeexactlyzeroatthesamplingfrequenciesandwouldbefiniteinfrequenciesbetweenthem.Thesmootherthefrequencyresponsebeingapproximated,thesmallerwillbetheerrorofinterpolationbetweenthesamplepoints.
Onewaytoreducetheerroristoincreasethenumberoffrequencysamples[Rab75].Theotherwaytoimprovethequalityofapproximationistomakeanumberoffrequencysamplesspecifiedasunconstrainedvariables.Thevaluesoftheseunconstrainedvariablesaregenerallyoptimizedbycomputertominimizesomesimplefunctionoftheapproximationerrore.g.onemightchooseasunconstrainedvariablesthefrequencysamplesthatlieinatransitionbandbetweentwofrequencybandsinwhichthefrequencyresponseisspecifiede.g.inthebandbetweenthepassbandandthestopbandofalowpassfilter.
Therearetwodifferentsetoffrequenciesthatcanbeusedfortakingthesamples.Onesetoffrequencysamplesareatfk=k/Nwherek=0,1,…,N-1.Theothersetofuniformlyspacedfrequencysamplescanbetakenatfk=(k+?)/Nfork=0,1,…,N-1.
Thesecondsetgivesustheadditionalflexibilitytospecifythedesiredfrequencyresponseatasecondpossiblesetoffrequencies.Thusagivenbandedgefrequencymaybeclosertotype-IIfrequencysamplingpointthattotype-Iinwhichcaseatype-IIdesignwouldbeusedinoptimizationprocedure.
Meritsoffrequencysamplingtechnique
(i)Unlikethewindowmethod,thistechniquecanbeusedforanygivenmagnituderesponse.
(ii)Thismethodisusefulforthedesignofnon-prototypefilterswherethedesiredmagnituderesponsecantakeanyirregularshape.
Therearesomedisadvantageswiththismethodi.ethefrequencyresponseobtainedbyinterpolationisequaltothedesiredfrequencyresponseonlyatthesampledpoints.Attheotherpoints,therewillbeafiniteerrorpresent.
OptimalFilterDesignMethods
Manymethodsarepresentunderthiscategory.Thebasicideaineachmethodistodesignthefiltercoefficientsagainandagainuntilaparticularerrorisminimized.Thevariousmethodsareasfollows:
(i)Leastsquarederrorfrequencydomaindesign.
(ii)NonlinearequationsolutionformaximalrippleFIRfilters.
(iii)PolynomialinterpolationsolutionformaximalrippleFIRfilters.
Leastsquarederrorfrequencydomaindesign
Asseeninthepreviousmethodoffrequencysamplingtechniquethereisnoconstraintontheresponsebetweenthesamplepoints,andpoorresultsmaybeobtained.
Thefrequencysamplingtechniqueismoreofaninterpolationmethodratherthananapproximationmethod.Thismethodcontrolstheresponsebetweenthesamplepointsbyconsideringanumberofsamplepointslargerthantheorderofthefilter.Thepurposeofmostfiltersistoseparatedesiredsignalsfromundesiredsignalsornoise.Astheenergyofthesignalisrelatedtothesquareofthesignal,asquarederrorapproximationcriterionisappropriatetooptimizethedesignoftheFIRfilters.
ThefrequencyresponseoftheFIRfilterisgivenby(5-2-19)foraN-pointFIRfilter.Anerrorfunctionisdefinedasfollows:
(5-2-19)
WhereandHd(ωk)areLsamplesofthedesiredresponse,whichistheerrormeasureasasumofthesquareddifferencesbetweentheactualanddesiredfrequencyresponseoverasetofLfrequencysamples.Themethodconsistsofthefollowingsteps:
(i)First‘L’samplesfromthecontinuousfrequencyresponsearetaken,whereL>N(lengthoftheimpulseresponseoffiltertobedesigned).
(ii)Thenusingthefollowingformula:
(5-2-20)
theL-pointfilterimpulseresponseiscalculated.
(iii)ThentheobtainedfilterimpulseresponseissymmetricallytruncatedtodesiredlengthN.
(iv)Thenthefrequencyresponseiscalculatedusingthefollowingrelation:
(5-2-21)
(v)Themagnitudeofthefrequencyresponseatthesefrequencypointsforwillnotbeequaltothedesiredones,buttheoverallleastsquareerrorwillbereducedeffectivelythiswillreducetherippleinthefilterresponse.
Tofurtherreducetherippleandovershootnearthebandedges,atransitionregionwillbedefinedwithalineartransferfunction.ThentheLfrequencysamplesaretakenatusingwhichthefirstNsamplesofthefilterarecalculatedusingtheabovemethod.Usingthismethod,reducestherippleintheinterpolatedfrequencyresponse.
NonlinearEquationsolutionformaximalrippleFIRfilters
TherealpartofthefrequencyresponseofthedesignedFIRfiltercanbewrittenaswherelimitsofsummationanda(n)varyaccordingtothetypeofthefilter.ThenumberoffrequenciesatwhichH(ω)couldattainanextremumisstrictlyafunctionofthetypeofthelinearphasefilteri.e.whetherlengthNoffilterisoddorevenorfilterissymmetricoranti-symmetric.
Ateachextremum,thevalueofH(ω)ispredeterminedbyacombinationoftheweightingfunctionW(ω),thedesiredfrequencyresponse,andaquantitythatrepresentsthepeakerrorofapproximationdistributingthefrequenciesatwhichH(ω)attainsanextremalvalueamongthedifferentfrequencybandsoverwhichadesiredresponsewasbeingapproximated.Sincethesefiltershavethemaximumnumberofripples,theyarecalledmaximalripplefilters.
Thismethodisasfollows:
1.AteachoftheNeunknownexternalfrequencies,E(ω)attainsthemaximumvalueofeitherandE(ω)orequivalentlyH(ω)haszeroderivative.ThustwoNeequationsoftheform
areobtained.
(5-2-22)
(5-2-23)
Theseequationsrepresentasetof2NenonlinearequationsintwoNeunknowns,NeimpulseresponsecoefficientsandNefrequenciesatwhichH(ω)obtainstheextremalvalue.ThesetoftwoNeequationsmaybesolvediterativelyusingnonlinearoptimizationprocedure.
Animportantthingtonoteisthatherethepeakerror()isafixedquantityandisnotminimizedbytheoptimizationscheme.ThustheshapeofH(ω)ispostulatedaprioriandonlythefrequenciesatwhichH(ω)attainstheextremalvaluesareunknown.
Thedisadvantageofthismethodisthatthedesignprocedurehasnowayofspecifyingbandedgesforthedifferentfrequencybandsofthefilter.Thustheoptimizationalgorithmisfreetoselectexactlywherethebandswilllie.
PolynomialInterpolationSolutionforMaximalRippleFIRfilters
ThisalgorithmisbasicallyaniterativetechniqueforproducingapolynomialH(ω)thathasextremaofdesiredvalues.ThealgorithmbeginsbymakinganinitialestimateofthefrequenciesatwhichtheextremainH(ω)willoccurandthenusesthewell-knownLagrangeinterpolationformulatoobtainapolynomialthatalternativelygoesthroughthemaximumallowableripplevaluesatthesefrequencies.Ithasbeenexperimentallyfoundthattheinitialguessofextremalfrequenciesdoesnotaffecttheultimateconvergenceofthealgorithmbutinsteadaffectsthenumberofiterationsrequiredtoachievethedesiredresult.
Letusconsiderthecaseofdesignofalowpassfilterusingtheabovemethod.
TheFig5.5showstheresponseofalowpassfilterwithN=11.Thenumberofextremalfrequenciesi.e.thefrequencieswhereripplesoccurare6inthiscase.Theyaredividedinto3passbandextremaand3stopbandextrema.ThefilleddotsindicatetheinitialguessastotheextremalfrequenciesofH(ω).ThesolidlineistheinitialLagrangepolynomialobtainedbychoosingpolynomialcoefficientssothatthevaluesofthepolynomialattheguessedsetoffrequenciesareidenticaltotheassignedextremevalues.
Butthispolynomialhasextremathatexceedsthespecifiedmaximavalues.ThenextstageofthealgorithmistolocatethefrequenciesatwhichtheextremaofthefirstLagrangeinterpolationoccur.Thesefrequenciesarenowusedasthenewfrequenciesforwhichtheextremaofthefilterresponseoccur.ThissecondsetoffrequenciesareindicatedbyopendotsinFig5.5.Nowsimilarlythenewsetoffrequenciesaretakenasthosefrequencieswherethemaximumexceedsthespecifiedmaxima.Thusthemethodiscompletelyiterativeinnature.Fig5.5Iterativesolutionforamaximumripplelowpassfilter
IIRfilterdesign
Typicalfrequency-selectivefiltershavetheclosedformformulas,butarbitraryfiltershaven’ttheclosedformformulasindesign.Inthiscase,weapplythecomputer-aideddesigntechniquestodesignthedesiredfilter.
MostalgorithmicdesignproceduresforIIRfilterstakethefollowingform:
1.H(z)isassumedtoberationalfunction.Itcanberepresentedasaratioofpolynomialinz(orz-1),asaproductofnumeratoranddenominatorfactors(zerosandpoles),orasaproductofsecond-orderfactors.
2.TheordersofthenumeratoranddenominatorofH(z)arefixed.
3.Anidealdesiredfrequencyresponseandacorrespondingapproximationerrorcriterionischosen.
4.Byasuitableoptimizationalgorithm,thefreeparameters(numeratoranddenominatorcoefficients,zeroandpoles,etc)arevariedinasystematicwaytominimizetheapproximationerroraccordingtotheassumederrorcriterion.
5.Thesetofparametersthatminimizestheapproximationerrordeterminesthesystemfunctionofthedesiredsystem.
Deczky’sMethod
InDeczky’smethod,thesystemfunctionofthefilterisrepre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代熱風(fēng)系統(tǒng)在醫(yī)療設(shè)備中的應(yīng)用案例
- 現(xiàn)代口腔門診的通風(fēng)與空氣質(zhì)量設(shè)計(jì)
- 烘焙坊經(jīng)營中的供應(yīng)鏈優(yōu)化
- 現(xiàn)代科技助力教育普及與均衡發(fā)展
- 環(huán)境友好的商業(yè)產(chǎn)品設(shè)計(jì)案例分享
- 國慶節(jié)兒童泥塑活動方案
- 10《雨和雪》 說課稿-2024-2025學(xué)年科學(xué)六年級上冊人教鄂教版
- 2023三年級數(shù)學(xué)上冊 五 解決問題的策略練習(xí)十(2)說課稿 蘇教版
- 2024-2025學(xué)年高中歷史 專題二 近代中國資本主義的曲折發(fā)展 2.2 民國時(shí)期民族工業(yè)的曲折發(fā)展說課稿1 人民版必修2
- 《11 剪紙花邊》 說課稿-2024-2025學(xué)年科學(xué)一年級上冊湘科版
- 《水電站繼電保護(hù)》課件
- 沈陽市第一屆“舒心傳技 莘紳向陽”職業(yè)技能大賽技術(shù)工作文件-27-全媒體運(yùn)營師
- 安全生產(chǎn)網(wǎng)格員培訓(xùn)
- 統(tǒng)編版語文三年級下冊第三單元綜合性學(xué)習(xí)中華傳統(tǒng)節(jié)日 活動設(shè)計(jì)
- 2024年山東泰安市泰山財(cái)金投資集團(tuán)有限公司招聘筆試參考題庫含答案解析
- (七圣)七圣娘娘簽詩
- 內(nèi)鏡下粘膜剝離術(shù)(ESD)護(hù)理要點(diǎn)及健康教育
- 新媒體文案創(chuàng)作與傳播精品課件(完整版)
- 2022年全省百萬城鄉(xiāng)建設(shè)職工職業(yè)技能競賽暨“華衍杯”江蘇省第三屆供水安全知識競賽題庫
- 廣西北海LNG儲罐保冷施工方案
- 產(chǎn)業(yè)園工程施工組織設(shè)計(jì)(技術(shù)標(biāo)近200頁)
評論
0/150
提交評論