山東省德州慶云縣聯(lián)考2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
山東省德州慶云縣聯(lián)考2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
山東省德州慶云縣聯(lián)考2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
山東省德州慶云縣聯(lián)考2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
山東省德州慶云縣聯(lián)考2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省德州慶云縣聯(lián)考2024屆中考考前最后一卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)2.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應(yīng)關(guān)系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次3.計算(x-l)(x-2)的結(jié)果為()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+24.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.15.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.6.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球7.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.8.的倒數(shù)的絕對值是()A. B. C. D.9.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.510.如圖所示的幾何體是一個圓錐,下面有關(guān)它的三視圖的結(jié)論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形11.下列分式中,最簡分式是()A. B. C. D.12.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結(jié)論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.14.方程=1的解是_____.15.有一個正六面體,六個面上分別寫有1~6這6個整數(shù),投擲這個正六面體一次,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的概率是____.16.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數(shù)圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.17.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為_____.18.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形20.(6分)如圖,一次函數(shù)y=﹣x+6的圖象分別交y軸、x軸交于點A、B,點P從點B出發(fā),沿射線BA以每秒1個單位的速度出發(fā),設(shè)點P的運動時間為t秒.(1)點P在運動過程中,若某一時刻,△OPA的面積為6,求此時P的坐標;(2)在整個運動過程中,當t為何值時,△AOP為等腰三角形?(只需寫出t的值,無需解答過程)21.(6分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.22.(8分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形23.(8分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側(cè)),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達式.24.(10分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.25.(10分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.

解:因為直線可變形為,其中,所以點到直線的距離為:.根據(jù)以上材料,求:點到直線的距離,并說明點P與直線的位置關(guān)系;已知直線與平行,求這兩條直線的距離.26.(12分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.27.(12分)如圖,已知△ABC,請用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.【點睛】本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關(guān)鍵.2、D【解析】

A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據(jù)此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.3、B【解析】

根據(jù)多項式的乘法法則計算即可.【詳解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故選B.【點睛】本題考查了多項式與多項式的乘法運算,多項式與多項式相乘,先用一個多項式的每一項分別乘另一個多項式的每一項,再把所得的積相加.4、C【解析】

延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉(zhuǎn)60°得到△ABB′是等邊三角形是解本題的關(guān)鍵.5、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).6、A【解析】

根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.7、B【解析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.8、D【解析】

直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).9、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.10、D【解析】

先得到圓錐的三視圖,再根據(jù)中心對稱圖形和軸對稱圖形的定義求解即可.【詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;

B、左視圖不是中心對稱圖形,故B錯誤;

C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;

D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.

故選:D.【點睛】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關(guān)鍵.11、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.12、D【解析】

由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故B正確,不符合題意;

根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;

由△BAE∽△ADC,得到CD與AD的大小關(guān)系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設(shè)AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質(zhì),解直角三角形,掌握相似三角形的判定方法是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.14、x=3【解析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗x=3是分式方程的解,故答案為3.【點睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結(jié)果須代入最簡公分母進行檢驗,結(jié)果為零,則原方程無解;結(jié)果不為零,則為原方程的解.15、23【解析】∵投擲這個正六面體一次,向上的一面有6種情況,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的有2、3、4、6共4種情況,∴其概率是=.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、1.【解析】連結(jié)AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.17、(,0)【解析】試題解析:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設(shè)反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應(yīng)點C′的坐標為(,0)故答案為(,0).18、(3,0)【解析】

把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【點睛】本題考查了點的坐標與拋物線解析式的關(guān)系,拋物線與x軸交點坐標的求法.本題也可以用根與系數(shù)關(guān)系直接求解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2);(3).【解析】

(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;(2)根據(jù)四邊形是矩形,得出,進而得出,根據(jù)30°直角三角形的性質(zhì)即可得出答案;(3)根據(jù)四邊形ABB′C′為正方形,從而得出,再根據(jù)等腰直角三角形的性質(zhì)即可得出答案.【詳解】解:(1)∵△AB′C′的邊長變?yōu)榱恕鰽BC的n倍,∴△ABC∽△AB′C′,∴,故答案為:.(2)四邊形是矩形,∴..在中,,...(3)若四邊形ABB′C′為正方形,則,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案為:.【點睛】本題考查了幾何變換中的新定義問題,以及相似三角形的判定和性質(zhì),理解[θ,n]的意義是解題的關(guān)鍵.20、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】

(1)先求出△OPA的面積為6時BP的長,再求出點P的坐標;(2)分別討論AO=AP,AP=OP和AO=OP三種情況.【詳解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,∴A(0,6),B(8,0),∴OA=6,OB=8,∴AB=10,∴AB邊上的高為6×8÷10=,∵P點的運動時間為t,∴BP=t,則AP=,當△AOP面積為6時,則有AP×=6,即×=6,解得t=7.5或12.5,過P作PE⊥x軸,PF⊥y軸,垂足分別為E、F,則PE==4.5或7.5,BE==6或10,則點P坐標為(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由題意可知BP=t,AP=,當△AOP為等腰三角形時,有AP=AO、AP=OP和AO=OP三種情況.

①當AP=AO時,則有=6,解得t=4或16;②當AP=OP時,過P作PM⊥AO,垂足為M,如圖1,則M為AO中點,故P為AB中點,此時t=5;③當AO=OP時,過O作ON⊥AB,垂足為N,過P作PH⊥OB,垂足為H,如圖2,則AN=AP=(10-t),

∵PH∥AO,∴△AOB∽△PHB,∴=,即=,∴PH=t,又∠OAN+∠AON=∠OAN+PBH=90°,∴∠AON=∠PBH,又∠ANO=∠PHB,

∴△ANO∽△PHB,

∴=,即=,解得t=;綜上可知當t的值為、4、5和16時,△AOP為等腰三角形.21、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質(zhì)得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理22、詳見解析.【解析】

四邊形ABCD是正方形,利用已知條件先證明四邊形ABCD是平行四邊形,再證明四邊形ABCD是矩形,再根據(jù)對角線垂直的矩形是正方形即可證明四邊形ABCD是正方形.【詳解】證明:在四邊形ABCD中,OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,∵OA=OB=OC=OD,又∵AC=AO+OC,BD=OB+DO,∴AC=BD,∴平行四邊形是矩形,在△AOB中,,∴△AOB是直角三角形,即AC⊥BD,∴矩形ABCD是正方形.【點睛】本題考查了平行四邊形的判定、矩形的判定、正方形的判定以及勾股定理的運用和勾股定理的逆定理的運用,題目的綜合性很強.23、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】

(1)解方程求出點A的坐標,根據(jù)勾股定理計算即可;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達式為:y=x1+bx+1,根據(jù)二次函數(shù)的性質(zhì)求出點C′的坐標,根據(jù)題意求出直線CC′的解析式,代入計算即可.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論