版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濟(jì)南市歷城重點(diǎn)名校2024年中考試題猜想數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.九章算術(shù)是中國古代數(shù)學(xué)專著,九章算術(shù)方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時(shí)候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設(shè)走路快的人要走
x
步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.2.已知一個(gè)等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或123.如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),按此規(guī)律,則第(n)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為()A. B. C. D.4.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個(gè)根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定5.方程的解是A.3 B.2 C.1 D.06.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.7.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠08.把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個(gè)底面為長方形(長為寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分周長和是()A. B. C. D.9.如圖:A、B、C、D四點(diǎn)在一條直線上,若AB=CD,下列各式表示線段AC錯(cuò)誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB10.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對(duì)折,A是對(duì)折后劣弧上的一點(diǎn),∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°11.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.12.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-1二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ.給出如下結(jié)論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結(jié)論是_________.(填寫序號(hào))14.如圖,點(diǎn)P(3a,a)是反比例函(k>0)與⊙O的一個(gè)交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的表達(dá)式為______.15.如圖,△ABC中,CD⊥AB于D,E是AC的中點(diǎn).若AD=6,DE=5,則CD的長等于.16.把多項(xiàng)式9x3﹣x分解因式的結(jié)果是_____.17.如圖所示,矩形ABCD的頂點(diǎn)D在反比例函數(shù)(x<0)的圖象上,頂點(diǎn)B,C在x軸上,對(duì)角線AC的延長線交y軸于點(diǎn)E,連接BE,△BCE的面積是6,則k=_____.18.如圖,E是?ABCD的邊AD上一點(diǎn),AE=12三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).(1)求n的值和拋物線的解析式;(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).20.(6分)先化簡,再求值:(x﹣2﹣)÷,其中x=.21.(6分)探究:在一次聚會(huì)上,規(guī)定每兩個(gè)人見面必須握手,且只握手1次若參加聚會(huì)的人數(shù)為3,則共握手次:;若參加聚會(huì)的人數(shù)為5,則共握手次;若參加聚會(huì)的人數(shù)為n(n為正整數(shù)),則共握手次;若參加聚會(huì)的人共握手28次,請(qǐng)求出參加聚會(huì)的人數(shù).拓展:嘉嘉給琪琪出題:“若線段AB上共有m個(gè)點(diǎn)(含端點(diǎn)A,B),線段總數(shù)為30,求m的值.”琪琪的思考:“在這個(gè)問題上,線段總數(shù)不可能為30”琪琪的思考對(duì)嗎?為什么?22.(8分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點(diǎn)C作AD的垂線,交AD的延長線于點(diǎn)H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關(guān)系,并證明.23.(8分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個(gè)單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.24.(10分)已知:正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請(qǐng)直接寫出如圖中的四個(gè)角,使寫出的每一個(gè)角的大小都等于旋轉(zhuǎn)角.25.(10分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,CD⊥x軸于點(diǎn)D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F(xiàn),當(dāng)時(shí),求點(diǎn)F的坐標(biāo).26.(12分)如圖,已知點(diǎn)A(﹣2,0),B(4,0),C(0,3),以D為頂點(diǎn)的拋物線y=ax2+bx+c過A,B,C三點(diǎn).(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)設(shè)拋物線的對(duì)稱軸DE交線段BC于點(diǎn)E,P為第一象限內(nèi)拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).27.(12分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】解:設(shè)走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點(diǎn)睛:本題考查了一元一次方程的應(yīng)用.找準(zhǔn)等量關(guān)系,列方程是關(guān)鍵.2、C【解析】試題分析:①4是腰長時(shí),三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時(shí),三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點(diǎn):4.等腰三角形的性質(zhì);4.三角形三邊關(guān)系;4.分類討論.3、C【解析】
由圖形可知:第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的圖象有2+3=5個(gè),第(3)個(gè)圖形中面積為1的正方形有2+3+4=9個(gè),…,按此規(guī)律,第n個(gè)圖形中面積為1的正方形有2+3+4+…+n+1=.【詳解】第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的圖象有2+3=5個(gè),第(3)個(gè)圖形中面積為1的正方形有2+3+4=9個(gè),…,按此規(guī)律,第n個(gè)圖形中面積為1的正方形有2+3+4+…+(n+1)=個(gè).【點(diǎn)睛】本題考查了規(guī)律的知識(shí)點(diǎn),解題的關(guān)鍵是根據(jù)圖形的變化找出規(guī)律.4、C【解析】
首先求出方程的根,再利用半徑長度,由點(diǎn)O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點(diǎn)O到直線l距離是方程x2-4x-12=0的一個(gè)根,即為6,
∴點(diǎn)O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【點(diǎn)睛】本題考核知識(shí)點(diǎn):直線與圓的位置關(guān)系.解題關(guān)鍵點(diǎn):理解直線與圓的位置關(guān)系的判定方法.5、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解.故選A.6、A【解析】
分別求出各個(gè)不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數(shù)軸上表示為:
.
故選A.【點(diǎn)睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.7、C【解析】
分式分母不為0,所以,解得.故選:C.8、D【解析】
根據(jù)題意列出關(guān)系式,去括號(hào)合并即可得到結(jié)果.【詳解】解:設(shè)小長方形卡片的長為x,寬為y,根據(jù)題意得:x+2y=a,則圖②中兩塊陰影部分周長和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故選擇:D.【點(diǎn)睛】此題考查了整式的加減,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、C【解析】
根據(jù)線段上的等量關(guān)系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項(xiàng)表示正確;B、∵AB+BC=AC,∴此選項(xiàng)表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項(xiàng)表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項(xiàng)表示正確.故答案選:C.【點(diǎn)睛】本題考查了線段上兩點(diǎn)間的距離及線段的和、差的知識(shí),解題的關(guān)鍵是找出各線段間的關(guān)系.10、B【解析】試題分析:如圖,翻折△ACD,點(diǎn)A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B11、D【解析】
首先過點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.12、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當(dāng)1-a=0時(shí),即a=1,整式方程無解,當(dāng)x+1=0,即x=-1時(shí),分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點(diǎn)睛:本題考查了分式方程的解,解決本題的關(guān)鍵是熟記分式方程無解的條件.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、①②④【解析】
①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;
②連接AQ,如圖4,根據(jù)勾股定理可求出BP.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求出BQ,從而求出PQ的值,就可得到的值;③過點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求出QH,從而可求出S△DPQ的值;④過點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運(yùn)用三角函數(shù)的定義,就可求出cos∠ADQ的值.【詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求得BQ=,則PQ=,∴.故②正確;③過點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求得QH=,∴S△DPQ=DP?QH=××=.故③錯(cuò)誤;④過點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題主要考查了圓周角定理、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線分線段成比例、等腰三角形的性質(zhì)、平行線的性質(zhì)、銳角三角函數(shù)的定義、勾股定理等知識(shí),綜合性比較強(qiáng),常用相似三角形的性質(zhì)、勾股定理、三角函數(shù)的定義來建立等量關(guān)系,應(yīng)靈活運(yùn)用.14、y=【解析】設(shè)圓的半徑是r,根據(jù)圓的對(duì)稱性以及反比例函數(shù)的對(duì)稱性可得:πr2=10π解得:r=.∵點(diǎn)P(3a,a)是反比例函y=(k>0)與O的一個(gè)交點(diǎn),∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數(shù)的解析式是:y=.故答案是:y=.點(diǎn)睛:本題主要考查了反比例函數(shù)圖象的對(duì)稱性,正確根據(jù)對(duì)稱性求得圓的半徑是解題的關(guān)鍵.15、1.【解析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點(diǎn),DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.16、x(3x+1)(3x﹣1)【解析】
提取公因式分解多項(xiàng)式,再根據(jù)平方差公式分解因式,從而得到答案.【詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【點(diǎn)睛】本題主要考查了因式分解以及平方差公式,解本題的要點(diǎn)在于熟知多項(xiàng)式分解因式的相關(guān)方法.17、-1【解析】
先設(shè)D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據(jù)△BCE的面積是6,得出BC×OE=1,最后根據(jù)AB∥OE,得出,即BC?EO=AB?CO,求得ab的值即可.【詳解】設(shè)D(a,b),則CO=-a,CD=AB=b,∵矩形ABCD的頂點(diǎn)D在反比例函數(shù)y=(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC?EO=AB?CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案為-1.【點(diǎn)睛】本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,矩形的性質(zhì)以及平行線分線段成比例定理的綜合應(yīng)用,能很好地考核學(xué)生分析問題,解決問題的能力.解題的關(guān)鍵是將△BCE的面積與點(diǎn)D的坐標(biāo)聯(lián)系在一起,體現(xiàn)了數(shù)形結(jié)合的思想方法.18、4【解析】∵AE=12ED,AE+ED=AD,∴ED=2∵四邊形ABCD是平行四邊形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案為4.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)n=2;y=x2﹣x﹣1;(2)p=;當(dāng)t=2時(shí),p有最大值;(3)6個(gè),或;【解析】
(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長度,利用勾股定理列式求出AB的長,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長公式表示出p,利用直線和拋物線的解析式表示DE的長,整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問題解答;
(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,根據(jù)圖3、圖4兩種情形即可解決.【詳解】解:(1)∵直線l:y=x+m經(jīng)過點(diǎn)B(0,﹣1),∴m=﹣1,∴直線l的解析式為y=x﹣1,∵直線l:y=x﹣1經(jīng)過點(diǎn)C(4,n),∴n=×4﹣1=2,∵拋物線y=x2+bx+c經(jīng)過點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),∴,解得,∴拋物線的解析式為y=x2﹣x﹣1;(2)令y=0,則x﹣1=0,解得x=,∴點(diǎn)A的坐標(biāo)為(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y軸,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE?cos∠DEF=DE?=DE,DF=DE?sin∠DEF=DE?=DE,∴p=2(DF+EF)=2(+)DE=DE,∵點(diǎn)D的橫坐標(biāo)為t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴當(dāng)t=2時(shí),p有最大值.(3)“落點(diǎn)”的個(gè)數(shù)有6個(gè),如圖1,圖2中各有2個(gè),圖3,圖4各有一個(gè)所示.如圖3中,設(shè)A1的橫坐標(biāo)為m,則O1的橫坐標(biāo)為m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如圖4中,設(shè)A1的橫坐標(biāo)為m,則B1的橫坐標(biāo)為m+,B1的縱坐標(biāo)比例A1的縱坐標(biāo)大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo)為或【點(diǎn)睛】本題是二次函數(shù)綜合題型,主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求二次函數(shù)解析式,銳角三角函數(shù),長方形的周長公式,以及二次函數(shù)的最值問題,本題難點(diǎn)在于(3)根據(jù)旋轉(zhuǎn)角是90°判斷出A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,解題時(shí)注意要分情況討論.20、【解析】
根據(jù)分式的運(yùn)算法則即可求出答案.【詳解】原式,,.當(dāng)時(shí),原式【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是分式的化簡求值,解題關(guān)鍵是化簡成最簡再代入計(jì)算.21、探究:(1)3,1;(2);(3)參加聚會(huì)的人數(shù)為8人;拓展:琪琪的思考對(duì),見解析.【解析】
探究:(1)根據(jù)握手次數(shù)=參會(huì)人數(shù)×(參會(huì)人數(shù)-1)÷2,即可求出結(jié)論;
(2)由(1)的結(jié)論結(jié)合參會(huì)人數(shù)為n,即可得出結(jié)論;(3)由(2)的結(jié)論結(jié)合共握手28次,即可得出關(guān)于n的一元二次方程,解之取其正值即可得出結(jié)論;拓展:將線段數(shù)當(dāng)成握手?jǐn)?shù),頂點(diǎn)數(shù)看成參會(huì)人數(shù),由(2)的結(jié)論結(jié)合線段總數(shù)為2,即可得出關(guān)于m的一元二次方程,解之由該方程的解均不為整數(shù)可得出琪琪的思考對(duì).【詳解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案為3;1.(2)∵參加聚會(huì)的人數(shù)為n(n為正整數(shù)),∴每人需跟(n-1)人握手,∴握手總數(shù)為.故答案為.(3)依題意,得:=28,
整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:參加聚會(huì)的人數(shù)為8人.拓展:琪琪的思考對(duì),理由如下:如果線段數(shù)為2,則由題意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去).∵m為正整數(shù),∴沒有符合題意的解,∴線段總數(shù)不可能為2.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:(1)根據(jù)各數(shù)量之間的關(guān)系,列式計(jì)算;(2)根據(jù)各數(shù)量之間的關(guān)系,用含n的代數(shù)式表示出握手總數(shù);(3)(拓展)找準(zhǔn)等量關(guān)系,正確列出一元二次方程.22、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關(guān)系:2AH=AB+AC.證明見解析.【解析】
(1)①先根據(jù)角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質(zhì)得∠B=75°,最后利用三角形內(nèi)角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點(diǎn)F,取BF的中點(diǎn)G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)可得AG=AH,再由線段的和可得結(jié)論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點(diǎn)E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數(shù)量關(guān)系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點(diǎn)F,取BF的中點(diǎn)G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點(diǎn)睛】本題是三角形的綜合題,難度適中,考查了三角形全等的性質(zhì)和判定、等腰三角形的性質(zhì)和判定、勾股定理、三角形的中位線定理等知識(shí),熟練掌握這些性質(zhì)是本題的關(guān)鍵,第(2)問構(gòu)建等腰三角形是關(guān)鍵.23、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】
(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個(gè)階段:①當(dāng)0<t≤時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;②當(dāng)<t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過點(diǎn)作軸于點(diǎn)M,則,,.過點(diǎn)作于點(diǎn),則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個(gè)單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當(dāng)時(shí),如答圖2所示:設(shè)與交于點(diǎn),可得,.設(shè)與的交點(diǎn)為,則:.解得,∴..(2)當(dāng)時(shí),如答圖3所示:設(shè)分別與交于點(diǎn)、點(diǎn).∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關(guān)系式為:.24、(1)證明見解析;(2).【解析】
(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF,根據(jù)全等三角形的性質(zhì)即可得CE=DF;(2)由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【詳解】(1)證明:連接,∵正方形旋轉(zhuǎn)至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【點(diǎn)睛】本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及全等三角形的判定與性質(zhì),證明ΔEAC?ΔDAF是解決問題的關(guān)鍵.25、(1)m=8,n=-2;(2)點(diǎn)F的坐標(biāo)為,【解析】分析:(1)利用三角形的面積公式構(gòu)建方程求出n,再利用待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為,.②圖中,當(dāng)k>0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 武漢校外合同范例
- 出售電腦分切機(jī)合同范例
- 天津?yàn)I海汽車工程職業(yè)學(xué)院《有機(jī)合成化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新型叉車采購合同范例
- 天府新區(qū)信息職業(yè)學(xué)院《體育-拓展訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 合作拿提成合同范例
- 用車勞動(dòng)合同范例
- 分期訂購房車合同范例
- 書出版合同范例 單位
- 園區(qū)總承包施工合同范例
- 2024版:離婚法律訴訟文書范例3篇
- 一??埔惶厣o(hù)理匯報(bào)
- 小學(xué)體育新課標(biāo)培訓(xùn)
- 2024年國考申論真題(行政執(zhí)法卷)及參考答案
- 江蘇省南通市2024-2025學(xué)年高一上學(xué)期11月期中英語試題(無答案)
- 2024年應(yīng)急預(yù)案知識(shí)考試題庫及答案(共60題)
- 2024年11月紹興市2025屆高三選考科目診斷性考試(一模) 技術(shù)試卷(含答案詳解)
- 技術(shù)回轉(zhuǎn)窯液壓擋輪常見問題及修復(fù)方案
- 胃穿孔疑難病例討論
- 【數(shù)學(xué)】小學(xué)四年級(jí)口算題大全(10000道)
- 《監(jiān)理單位工作質(zhì)量考評(píng)手冊(cè)》裝訂版
評(píng)論
0/150
提交評(píng)論