




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PAGE類型十一二次函數(shù)與正方形有關(guān)的問題(專題訓(xùn)練)1.(2023·黑龍江綏化·統(tǒng)考中考真題)如圖,拋物線SKIPIF1<0的圖象經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn),且一次函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0.
(1)求拋物線和一次函數(shù)的解析式.(2)點(diǎn)SKIPIF1<0,SKIPIF1<0為平面內(nèi)兩點(diǎn),若以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點(diǎn)的四邊形是正方形,且點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的左側(cè).這樣的SKIPIF1<0,SKIPIF1<0兩點(diǎn)是否存在?如果存在,請直接寫出所有滿足條件的點(diǎn)SKIPIF1<0的坐標(biāo):如果不存在,請說明理由.(3)將拋物線SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長度得到拋物線SKIPIF1<0,此拋物線的圖象與SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(SKIPIF1<0點(diǎn)在SKIPIF1<0點(diǎn)左側(cè)).點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上的一個(gè)動點(diǎn)且在直線SKIPIF1<0下方.已知點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0.求SKIPIF1<0為何值時(shí),SKIPIF1<0有最大值,最大值是多少?【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)滿足條件的E、F兩點(diǎn)存在,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0【分析】(1)待定系數(shù)法求解析式即可求解;(2)①當(dāng)SKIPIF1<0為正方形的邊長時(shí),分別過SKIPIF1<0點(diǎn)SKIPIF1<0點(diǎn)作SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0同理可得,SKIPIF1<0;②以SKIPIF1<0為正方形的對角線時(shí),過SKIPIF1<0的中點(diǎn)SKIPIF1<0作SKIPIF1<0,使SKIPIF1<0與SKIPIF1<0互相平分且相等,則四邊形SKIPIF1<0為正方形,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0或4,進(jìn)而即可求解;(3)得出SKIPIF1<0是等腰直角三角形,SKIPIF1<0是等腰直角三角形,則SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,且橫坐標(biāo)為SKIPIF1<0得出SKIPIF1<0,進(jìn)而可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì)即可求解.【詳解】(1)解:把SKIPIF1<0,SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0
解得SKIPIF1<0
∴SKIPIF1<0
把SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0∴SKIPIF1<0(2)滿足條件的SKIPIF1<0、SKIPIF1<0兩點(diǎn)存在,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0
解:①當(dāng)SKIPIF1<0為正方形的邊長時(shí),分別過SKIPIF1<0點(diǎn)SKIPIF1<0點(diǎn)作SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0.
過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0.∵SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0同理可得,SKIPIF1<0②以SKIPIF1<0為正方形的對角線時(shí),過SKIPIF1<0的中點(diǎn)SKIPIF1<0作SKIPIF1<0,使SKIPIF1<0與SKIPIF1<0互相平分且相等,則四邊形SKIPIF1<0為正方形,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0
∵SKIPIF1<0,又SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0解得SKIPIF1<0或4當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0右側(cè)故舍去;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上所述:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(3)∵SKIPIF1<0向右平移8個(gè)單位長度得到拋物線SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)∴SKIPIF1<0
在直線SKIPIF1<0下方的拋物線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0
∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0是等腰直角三角形∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0又SKIPIF1<0∴SKIPIF1<0是等腰直角三角形∴SKIPIF1<0∵點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,且橫坐標(biāo)為SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0
∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0
∴SKIPIF1<0SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)綜合運(yùn)用,正方形的性質(zhì),二次函數(shù)的性質(zhì),分類討論,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.2.(2023·江蘇連云港·統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0的頂點(diǎn)為SKIPIF1<0.直線SKIPIF1<0過點(diǎn)SKIPIF1<0,且平行于SKIPIF1<0軸,與拋物線SKIPIF1<0交于SKIPIF1<0兩點(diǎn)(SKIPIF1<0在SKIPIF1<0的右側(cè)).將拋物線SKIPIF1<0沿直線SKIPIF1<0翻折得到拋物線SKIPIF1<0,拋物線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,頂點(diǎn)為SKIPIF1<0.
(1)當(dāng)SKIPIF1<0時(shí),求點(diǎn)SKIPIF1<0的坐標(biāo);(2)連接SKIPIF1<0,若SKIPIF1<0為直角三角形,求此時(shí)SKIPIF1<0所對應(yīng)的函數(shù)表達(dá)式;(3)在(2)的條件下,若SKIPIF1<0的面積為SKIPIF1<0兩點(diǎn)分別在邊SKIPIF1<0上運(yùn)動,且SKIPIF1<0,以SKIPIF1<0為一邊作正方形SKIPIF1<0,連接SKIPIF1<0,寫出SKIPIF1<0長度的最小值,并簡要說明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0,見解析【分析】(1)將拋物線解析式化為頂點(diǎn)式,進(jìn)而得出頂點(diǎn)坐標(biāo)SKIPIF1<0,根據(jù)對稱性,即可求解.(2)由題意得,SKIPIF1<0的頂點(diǎn)SKIPIF1<0與SKIPIF1<0的頂點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,則拋物線SKIPIF1<0.進(jìn)而得出可得SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),如圖1,過SKIPIF1<0作SKIPIF1<0軸,垂足為SKIPIF1<0.求得SKIPIF1<0,代入解析式得出SKIPIF1<0,求得SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),如圖2,過SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0.同理可得SKIPIF1<0,得出SKIPIF1<0,代入解析式得出SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),此情況不存在.(3)由(2)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0的面積為1,不合題意舍去.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0的面積為3,符合題意.由題意可求得SKIPIF1<0.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,在SKIPIF1<0中可求得SKIPIF1<0.在SKIPIF1<0中可求得SKIPIF1<0.易知當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0取最小值,最小值為SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,∴拋物線SKIPIF1<0的頂點(diǎn)坐標(biāo)SKIPIF1<0.∵SKIPIF1<0,點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱.∴SKIPIF1<0.(2)由題意得,SKIPIF1<0的頂點(diǎn)SKIPIF1<0與SKIPIF1<0的頂點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,∴SKIPIF1<0,拋物線SKIPIF1<0.∴當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),如圖1,過SKIPIF1<0作SKIPIF1<0軸,垂足為SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵直線SKIPIF1<0軸,∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵點(diǎn)SKIPIF1<0在SKIPIF1<0圖像上,∴SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0.∵當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,此時(shí)SKIPIF1<0重合,舍去.當(dāng)SKIPIF1<0時(shí),符合題意.將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.
②當(dāng)SKIPIF1<0時(shí),如圖2,過SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0.同理可得SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵點(diǎn)SKIPIF1<0在SKIPIF1<0圖像上,∴SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.此時(shí)SKIPIF1<0符合題意.將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.③當(dāng)SKIPIF1<0時(shí),此情況不存在.綜上,SKIPIF1<0所對應(yīng)的函數(shù)表達(dá)式為SKIPIF1<0或SKIPIF1<0.(3)如圖3,由(2)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的面積為1,不合題意舍去.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,此時(shí)SKIPIF1<0的面積為3,符合題意∴SKIPIF1<0.依題意,四邊形SKIPIF1<0是正方形,∴SKIPIF1<0.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,在SKIPIF1<0中可求得SKIPIF1<0.在SKIPIF1<0中可求得SKIPIF1<0.∴當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0取最小值,最小值為SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),特殊三角形問題,正方形的性質(zhì),勾股定理,面積問題,分類討論是解題的關(guān)鍵.3.(2023·江蘇揚(yáng)州·統(tǒng)考中考真題)在平面直角坐標(biāo)系SKIPIF1<0中,已知點(diǎn)A在y軸正半軸上.
(1)如果四個(gè)點(diǎn)SKIPIF1<0中恰有三個(gè)點(diǎn)在二次函數(shù)SKIPIF1<0(a為常數(shù),且SKIPIF1<0)的圖象上.①SKIPIF1<0________;②如圖1,已知菱形SKIPIF1<0的頂點(diǎn)B、C、D在該二次函數(shù)的圖象上,且SKIPIF1<0軸,求菱形的邊長;③如圖2,已知正方形SKIPIF1<0的頂點(diǎn)B、D在該二次函數(shù)的圖象上,點(diǎn)B、D在y軸的同側(cè),且點(diǎn)B在點(diǎn)D的左側(cè),設(shè)點(diǎn)B、D的橫坐標(biāo)分別為m、n,試探究SKIPIF1<0是否為定值.如果是,求出這個(gè)值;如果不是,請說明理由.(2)已知正方形SKIPIF1<0的頂點(diǎn)B、D在二次函數(shù)SKIPIF1<0(a為常數(shù),且SKIPIF1<0)的圖象上,點(diǎn)B在點(diǎn)D的左側(cè),設(shè)點(diǎn)B、D的橫坐標(biāo)分別為m、n,直接寫出m、n滿足的等量關(guān)系式.【答案】(1)①1;②SKIPIF1<0;③是,值為1;(2)SKIPIF1<0或SKIPIF1<0【分析】(1)①當(dāng)SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0不在二次函數(shù)圖象上,將SKIPIF1<0代入SKIPIF1<0,求解SKIPIF1<0值即可;②由①知,二次函數(shù)解析式為SKIPIF1<0,設(shè)菱形的邊長為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由菱形的性質(zhì)得,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0軸,SKIPIF1<0,根據(jù)SKIPIF1<0,即SKIPIF1<0,計(jì)算求出滿足要求的解即可;③如圖2,連接SKIPIF1<0、SKIPIF1<0交點(diǎn)為SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,由正方形的性質(zhì)可知,SKIPIF1<0為SKIPIF1<0、SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,證明SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由題意知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,計(jì)算求解即可1;(2)由題意知,分①當(dāng)SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),②當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè)時(shí),③當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè),SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),三種情況求解;①當(dāng)SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),SKIPIF1<0,同理(1)③,SKIPIF1<0,SKIPIF1<0,由題意知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;②當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè)時(shí),求解過程同(2)①;③當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè),SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),且SKIPIF1<0不垂直于SKIPIF1<0軸時(shí),同理可求SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè),SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),且SKIPIF1<0垂直于SKIPIF1<0軸時(shí),由正方形、二次函數(shù)的性質(zhì)可得,SKIPIF1<0.【詳解】(1)①解:當(dāng)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0不在二次函數(shù)圖象上,將SKIPIF1<0代入SKIPIF1<0,解得SKIPIF1<0,故答案為:1;②解:由①知,二次函數(shù)解析式為SKIPIF1<0,設(shè)菱形的邊長為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由菱形的性質(zhì)得,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0軸,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0(舍去),SKIPIF1<0(舍去),SKIPIF1<0,∴菱形的邊長為SKIPIF1<0;③解:如圖2,連接SKIPIF1<0、SKIPIF1<0交點(diǎn)為SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,
由正方形的性質(zhì)可知,SKIPIF1<0為SKIPIF1<0、SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由題意知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)B、D在y軸的同側(cè),且點(diǎn)B在點(diǎn)D的左側(cè),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是定值,值為1;(2)解:由題意知,分①當(dāng)SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),②當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè)時(shí),③當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè),SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),三種情況求解;①當(dāng)SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),∵SKIPIF1<0,同理(1)③,SKIPIF1<0,SKIPIF1<0,由題意知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,化簡得SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0;②當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè)時(shí),同理可求SKIPIF1<0;③當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè),SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),且SKIPIF1<0不垂直于SKIPIF1<0軸時(shí),同理可求SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0軸左側(cè),SKIPIF1<0在SKIPIF1<0軸右側(cè)時(shí),且SKIPIF1<0垂直于SKIPIF1<0軸時(shí),由正方形、二次函數(shù)的性質(zhì)可得,SKIPIF1<0;綜上所述,SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)解析式,二次函數(shù)的圖象與性質(zhì),二次函數(shù)與幾何綜合,正方形、菱形的性質(zhì),全等三角形的判定與性質(zhì).解題的關(guān)鍵在于對知識的熟練掌握與靈活運(yùn)用.4.(2023·江西·統(tǒng)考中考真題)綜合與實(shí)踐問題提出:某興趣小組開展綜合實(shí)踐活動:在SKIPIF1<0中,SKIPIF1<0,D為SKIPIF1<0上一點(diǎn),SKIPIF1<0,動點(diǎn)P以每秒1個(gè)單位的速度從C點(diǎn)出發(fā),在三角形邊上沿SKIPIF1<0勻速運(yùn)動,到達(dá)點(diǎn)A時(shí)停止,以SKIPIF1<0為邊作正方形SKIPIF1<0設(shè)點(diǎn)P的運(yùn)動時(shí)間為SKIPIF1<0,正方形SKIPIF1<0的而積為S,探究S與t的關(guān)系
(1)初步感知:如圖1,當(dāng)點(diǎn)P由點(diǎn)C運(yùn)動到點(diǎn)B時(shí),①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0_______.②S關(guān)于t的函數(shù)解析式為_______.(2)當(dāng)點(diǎn)P由點(diǎn)B運(yùn)動到點(diǎn)A時(shí),經(jīng)探究發(fā)現(xiàn)S是關(guān)于t的二次函數(shù),并繪制成如圖2所示的圖象請根據(jù)圖象信息,求S關(guān)于t的函數(shù)解析式及線段SKIPIF1<0的長.(3)延伸探究:若存在3個(gè)時(shí)刻SKIPIF1<0(SKIPIF1<0)對應(yīng)的正方形SKIPIF1<0的面積均相等.①SKIPIF1<0_______;②當(dāng)SKIPIF1<0時(shí),求正方形SKIPIF1<0的面積.【答案】(1)①3;②SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)①4;②SKIPIF1<0【分析】(1)①先求出SKIPIF1<0,再利用勾股定理求出SKIPIF1<0,最后根據(jù)正方形面積公式求解即可;②仿照(1)①先求出SKIPIF1<0,進(jìn)而求出SKIPIF1<0,則SKIPIF1<0;(2)先由函數(shù)圖象可得當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),SKIPIF1<0,由此求出當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可設(shè)S關(guān)于t的函數(shù)解析式為SKIPIF1<0,利用待定系數(shù)法求出SKIPIF1<0,進(jìn)而求出當(dāng)SKIPIF1<0時(shí),求得t的值即可得答案;(3)①根據(jù)題意可得可知函數(shù)SKIPIF1<0可以看作是由函數(shù)SKIPIF1<0向右平移四個(gè)單位得到的,設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0上的兩點(diǎn),則SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0上的兩點(diǎn),由此可得SKIPIF1<0,則SKIPIF1<0,根據(jù)題意可以看作SKIPIF1<0,則SKIPIF1<0;②由(3)①可得SKIPIF1<0,再由SKIPIF1<0,得到SKIPIF1<0,繼而得答案.【詳解】(1)解:∵動點(diǎn)P以每秒1個(gè)單位的速度從C點(diǎn)出發(fā),在三角形邊上沿SKIPIF1<0勻速運(yùn)動,∴當(dāng)SKIPIF1<0時(shí),點(diǎn)P在SKIPIF1<0上,且SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:3;②∵動點(diǎn)P以每秒1個(gè)單位的速度從C點(diǎn)出發(fā),在SKIPIF1<0勻速運(yùn)動,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:由圖2可知當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由圖2可知,對應(yīng)的二次函數(shù)的頂點(diǎn)坐標(biāo)為SKIPIF1<0,∴可設(shè)S關(guān)于t的函數(shù)解析式為SKIPIF1<0,把SKIPIF1<0代入SKIPIF1<0中得:SKIPIF1<0,解得SKIPIF1<0,∴S關(guān)于t的函數(shù)解析式為SKIPIF1<0,在SKIPIF1<0中,當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0;(3)解:①∵點(diǎn)P在SKIPIF1<0上運(yùn)動時(shí),SKIPIF1<0,點(diǎn)P在SKIPIF1<0上運(yùn)動時(shí)SKIPIF1<0,∴可知函數(shù)SKIPIF1<0可以看作是由函數(shù)SKIPIF1<0向右平移四個(gè)單位得到的,設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0上的兩點(diǎn),則SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0上的兩點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,∵存在3個(gè)時(shí)刻SKIPIF1<0(SKIPIF1<0)對應(yīng)的正方形SKIPIF1<0的面積均相等.∴可以看作SKIPIF1<0,∴SKIPIF1<0,故答案為:4;②由(3)①可得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.
.【點(diǎn)睛】本題主要考查了二次函數(shù)與圖形運(yùn)動問題,待定系數(shù)法求函數(shù)解析式,勾股定理等等,正確理解題意利用數(shù)形結(jié)合的思想求解是解題的關(guān)鍵.5.(2023·湖南永州·統(tǒng)考中考真題)如圖1,拋物線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù))經(jīng)過點(diǎn)SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0為拋物線上的動點(diǎn),SKIPIF1<0軸于H,且SKIPIF1<0.
(1)求拋物線的表達(dá)式;(2)如圖1,直線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,求SKIPIF1<0的最大值;(3)如圖2,四邊形SKIPIF1<0為正方形,SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,SKIPIF1<0交SKIPIF1<0的延長線于SKIPIF1<0,且SKIPIF1<0,求點(diǎn)SKIPIF1<0的橫坐標(biāo).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)根據(jù)頂點(diǎn)式坐標(biāo)公式和待定系數(shù)法分別求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0值,即可求出拋物線解析式.(2)利用拋物線的解析式可知道SKIPIF1<0點(diǎn)坐標(biāo),從而求出直線SKIPIF1<0的解析式,從而設(shè)SKIPIF1<0,根據(jù)直線SKIPIF1<0的解析式SKIPIF1<0可推出SKIPIF1<0,從而可以用SKIPIF1<0表達(dá)SKIPIF1<0長度,在觀察圖形可知SKIPIF1<0,將其SKIPIF1<0和SKIPIF1<0長度代入,即可將面積比轉(zhuǎn)化成二次函數(shù)的形式,根據(jù)SKIPIF1<0橫坐標(biāo)取值范圍以及此二次函數(shù)的圖像性質(zhì)即可求出SKIPIF1<0的最大值.(3)根據(jù)正方形的性質(zhì)和SKIPIF1<0可求出SKIPIF1<0,再利用SKIPIF1<0相似和SKIPIF1<0可推出SKIPIF1<0,設(shè)SKIPIF1<0,即可求出直線SKIPIF1<0的解析式,用SKIPIF1<0表達(dá)SKIPIF1<0點(diǎn)的橫縱坐標(biāo),最后代入拋物線解析式,求出SKIPIF1<0的值即可求出SKIPIF1<0點(diǎn)橫坐標(biāo).【詳解】(1)解:SKIPIF1<0拋物線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù))經(jīng)過點(diǎn)SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0拋物線的解析式為:SKIPIF1<0.故答案為:SKIPIF1<0.(2)解:過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,如圖所示,
SKIPIF1<0拋物線的解析式為:SKIPIF1<0,且與SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為:SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為:SKIPIF1<0.SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0的解析式為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.
SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值,且最大值為:SKIPIF1<0.故答案為:SKIPIF1<0.(3)解:∵+SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0拋物線的解析式為:SKIPIF1<0,且與SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0.設(shè)直線SKIPIF1<0的解析式為:SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為:SKIPIF1<0.
SKIPIF1<0,SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(十字相乘法),由SKIPIF1<0,得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)橫坐標(biāo)為:SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合應(yīng)用題,屬于壓軸題,解題的關(guān)鍵在于能否將面積問題和二次函數(shù)有效結(jié)合.6.(2022·浙江湖州)如圖1,已知在平面直角坐標(biāo)系xOy中,四邊形OABC是邊長為3的正方形,其中頂點(diǎn)A,C分別在x軸的正半軸和y軸的正半軸上,拋物線SKIPIF1<0經(jīng)過A,C兩點(diǎn),與x軸交于另一個(gè)點(diǎn)D.(1)①求點(diǎn)A,B,C的坐標(biāo);②求b,c的值.(2)若點(diǎn)P是邊BC上的一個(gè)動點(diǎn),連結(jié)AP,過點(diǎn)P作PM⊥AP,交y軸于點(diǎn)M(如圖2所示).當(dāng)點(diǎn)P在BC上運(yùn)動時(shí),點(diǎn)M也隨之運(yùn)動.設(shè)BP=m,CM=n,試用含m的代數(shù)式表示n,并求出n的最大值.【答案】(1)①A(3,0),B(3,3),C(0,3);②SKIPIF1<0(2)SKIPIF1<0;SKIPIF1<0【分析】(1)①根據(jù)坐標(biāo)與圖形的性質(zhì)即可求解;②利用待定系數(shù)法求解即可;(2)證明Rt△ABP∽Rt△PCM,根據(jù)相似三角形的性質(zhì)得到n關(guān)于m的二次函數(shù),利用二次函數(shù)的性質(zhì)即可求解.(1)解:①∵正方形OABC的邊長為3,∴點(diǎn)A,B,C的坐標(biāo)分別為A(3,0),B(3,3),C(0,3);②把點(diǎn)A(3,0),C(0,3)的坐標(biāo)分別代入y=?x2+bx+c,得SKIPIF1<0,解得SKIPIF1<0;(2)解:由題意,得∠APB=90°-∠MPC=∠PMC,∠B=∠PCM=90°,∴Rt△ABP∽Rt△PCM,∴SKIPIF1<0,即SKIPIF1<0.整理,得SKIPIF1<0,即SKIPIF1<0.∴當(dāng)SKIPIF1<0時(shí),n的值最大,最大值是SKIPIF1<0.【點(diǎn)睛】本題綜合考查了正方形的性質(zhì),相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,根據(jù)正方形的性質(zhì)求出點(diǎn)A,B,C的坐標(biāo)是解題的關(guān)鍵.7.(2023·江蘇蘇州·統(tǒng)考中考真題)如圖,二次函數(shù)SKIPIF1<0的圖像與SKIPIF1<0軸分別交于點(diǎn)SKIPIF1<0(點(diǎn)A在點(diǎn)SKIPIF1<0的左側(cè)),直線SKIPIF1<0是對稱軸.點(diǎn)SKIPIF1<0在函數(shù)圖像上,其橫坐標(biāo)大于4,連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,作半徑為SKIPIF1<0的圓,SKIPIF1<0與SKIPIF1<0相切,切點(diǎn)為SKIPIF1<0.
(1)求點(diǎn)SKIPIF1<0的坐標(biāo);(2)若以SKIPIF1<0的切線長SKIPIF1<0為邊長的正方形的面積與SKIPIF1<0的面積相等,且SKIPIF1<0不經(jīng)過點(diǎn)SKIPIF1<0,求SKIPIF1<0長的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)令SKIPIF1<0求得點(diǎn)SKIPIF1<0的橫坐標(biāo)即可解答;(2)由題意可得拋物線的對稱軸為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0;如圖連接SKIPIF1<0,則SKIPIF1<0,進(jìn)而可得切線長SKIPIF1<0為邊長的正方形的面積為SKIPIF1<0;過點(diǎn)P作SKIPIF1<0軸,垂足為H,可得SKIPIF1<0;由題意可得SKIPIF1<0,解得SKIPIF1<0;然后再分當(dāng)點(diǎn)M在點(diǎn)N的上方和下方兩種情況解答即可.【詳解】(1)解:令SKIPIF1<0,則有:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0.(2)解:∵拋物線過SKIPIF1<0∴拋物線的對稱軸為SKIPIF1<0,設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,如圖:連接SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴切線SKIPIF1<0為邊長的正方形的面積為SKIPIF1<0,過點(diǎn)P作SKIPIF1<0軸,垂足為H,則:SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,
假設(shè)SKIPIF1<0過點(diǎn)SKIPIF1<0,則有以下兩種情況:①如圖1:當(dāng)點(diǎn)M在點(diǎn)N的上方,即SKIPIF1<0
∴SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0;②如圖2:當(dāng)點(diǎn)M在點(diǎn)N的上方,即SKIPIF1<0
∴SKIPIF1<0,解得:SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0;綜上,SKIPIF1<0或SKIPIF1<0.∴當(dāng)SKIPIF1<0不經(jīng)過點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題主要考查了二次函數(shù)的性質(zhì)、切線的性質(zhì)、勾股定理等知識點(diǎn),掌握分類討論思想是解答本題的關(guān)鍵.8.(2022·山東泰安)若二次函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0,其對稱軸為直線SKIPIF1<0,與x軸的另一交點(diǎn)為C.(1)求二次函數(shù)的表達(dá)式;(2)若點(diǎn)M在直線SKIPIF1<0上,且在第四象限,過點(diǎn)M作SKIPIF1<0軸于點(diǎn)N.①若點(diǎn)N在線段SKIPIF1<0上,且SKIPIF1<0,求點(diǎn)M的坐標(biāo);②以SKIPIF1<0為對角線作正方形SKIPIF1<0(點(diǎn)P在SKIPIF1<0右側(cè)),當(dāng)點(diǎn)P在拋物線上時(shí),求點(diǎn)M的坐標(biāo).【答案】(1)SKIPIF1<0(2)①SKIPIF1<0;②SKIPIF1<0【分析】(1)利用待定系數(shù)解答,即可求解;(2)①先求出直線SKIPIF1<0的表達(dá)式為SKIPIF1<0,然后設(shè)點(diǎn)N的坐標(biāo)為SKIPIF1<0.可得SKIPIF1<0.可得到SKIPIF1<0,SKIPIF1<0.再由SKIPIF1<0,即可求解;②連接SKIPIF1<0與SKIPIF1<0交與點(diǎn)E.設(shè)點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)村豪宅出租合同范本
- 代保管合同范本
- 華盛茶葉合同范本
- 農(nóng)業(yè)投資內(nèi)部合同范本
- 倉庫貨源轉(zhuǎn)讓合同范本
- 專利租賃合同范本
- 信用評級合同范本
- 農(nóng)具批發(fā)采購合同范本
- 儀表制氮機(jī)采購合同范本
- 創(chuàng)建公司合同范本
- 績效管理全套ppt課件(完整版)
- 推進(jìn)優(yōu)質(zhì)護(hù)理-改善護(hù)理服務(wù)-PPT課件
- 動畫基礎(chǔ)知識ppt(完整版)課件
- T∕CNFAGS 3-2021 三聚氰胺單位產(chǎn)品消耗限額
- 中國音樂史PPT講稿課件
- 橋梁模板施工方案最終版
- 幾種藏文輸入法的鍵盤分布圖
- 部編版小學(xué)六年級書法教案【16課時(shí)】電子稿
- 廣元九州施工合同正式
- 蘭州商學(xué)院二級學(xué)院權(quán)力運(yùn)行流程圖
- (東莞市)三對三遙控車足球賽規(guī)則
評論
0/150
提交評論