版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年新疆沙灣縣一中高三第三次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.很多關于整數規(guī)律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.2.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.3.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數4.已知是虛數單位,則復數()A. B. C.2 D.5.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.6.已知函數,其中,若恒成立,則函數的單調遞增區(qū)間為()A. B.C. D.7.集合中含有的元素個數為()A.4 B.6 C.8 D.128.若(),,則()A.0或2 B.0 C.1或2 D.19.已知定義在上的函數滿足,且當時,.設在上的最大值為(),且數列的前項的和為.若對于任意正整數不等式恒成立,則實數的取值范圍為()A. B. C. D.10.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.11.下列與函數定義域和單調性都相同的函數是()A. B. C. D.12.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數列和的前項和分別為和,若,則______.14.某班有學生52人,現將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.15.已知非零向量的夾角為,且,則______.16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內切圓的圓心的縱坐標為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.18.(12分)已知.(1)解關于x的不等式:;(2)若的最小值為M,且,求證:.19.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數a,k的值.20.(12分)在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.21.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.22.(10分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數成立,則,;不成立,是偶數不成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.2、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.3、C【解析】
根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區(qū)間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.4、A【解析】
根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.5、C【解析】
根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.6、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數的單調區(qū)間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.7、B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B8、A【解析】
利用復數的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數模的運算,屬于基礎題.9、C【解析】
由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數恒成立,設,只需找到數列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數不等式恒成立,即對于任意正整數恒成立,即對于任意正整數恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數列的最大值為,所以.故選:C.【點睛】本題考查數列中的不等式恒成立問題,涉及到求函數解析、等比數列前n項和、數列單調性的判斷等知識,是一道較為綜合的數列題.10、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.11、C【解析】
分析函數的定義域和單調性,然后對選項逐一分析函數的定義域、單調性,由此確定正確選項.【詳解】函數的定義域為,在上為減函數.A選項,的定義域為,在上為增函數,不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數,符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數的定義域和單調性,屬于基礎題.12、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
結合等差數列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.14、18【解析】
根據系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數列,故可根據其中三個個體的編號求出另一個個體的編號.【詳解】解:根據系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.15、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點睛】本題考查根據向量的數量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數量積化簡求解即可,屬于基礎題.16、2【解析】
由題意畫出圖形,設內切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯立①②解得:,又因圓心的縱坐標為,.故答案為:【點睛】本題考查雙曲線的幾何性質,考查數形結合思想與運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I).(II)【解析】
(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.18、(1);(2)證明見解析.【解析】
(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數,求得最小值,再利用均值不等式即可證明.【詳解】(1)當時,等價于,該不等式恒成立,當時,等價于,該不等式解集為,當時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當且僅當時等號成立.【點睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19、解:設特征向量為α=對應的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.20、(1)直線的普通方程,圓的直角坐標方程:.(2)【解析】
(1)直接利用轉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 瑜伽解剖提升課程設計
- 小學筆墨紙硯課程設計
- 智能交通燈設計課程設計
- 綜合課程設計范文模板
- 研學課程設計洛陽
- 物流軟件開發(fā)課程設計
- 線路規(guī)劃與設計課程設計
- 二零二五年度個人住房屋頂綠化承包合同3篇
- 粉末冶金 課程設計
- 二零二五年度海淀京張鐵路遺址公園運營管理服務合同2篇
- 2024年度通信設備維修服務合同范本3篇
- 安恒可信數據空間建設方案 2024
- 2024年學校與家長共同促進家校合作發(fā)展協(xié)議3篇
- C預應力錨索框架梁施工方案(完整版)
- 參加團干部培訓心得體會
- 中華民族共同體概論專家講座第一講中華民族共同體基礎理論
- 湖北省襄陽市2023-2024學年高一上學期期末考試化學試題(含答案)
- 浙江省金華市十校2023-2024學年高一上學期1月期末考試物理試題 含解析
- 物業(yè)管理師考試題庫單選題100道及答案解析
- 校園智能安防系統(tǒng)安裝合同
- 2024年專利代理人專利法律知識考試試卷及參考答案
評論
0/150
提交評論