




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PreliminaryStudyofAdvancedTechnologies
towards6GEra:QITs
2021
1/33
PreliminaryStudyofAdvancedTechnologies
towards6GEra:QITs
2021
2/33
ExecutiveSummary
Withthelarge-scalecommercializationof5Gin2021,theglobalindustryhaswitnessedastartingofexplorationandresearchonthe6thgeneration(6G)communicationsystems.6Gwillbuildanewtypeofnetworkthatisintelligentlyandefficientlyinterconnectedbetweenhumans,machineandthings.Onthebasisofgreatlyimprovingthenetworkcapability,ithasnewfunctionssuchasendogenousintelligence,multi-dimensionalperception,digitaltwin,endogenousnetworksecurityandsoon.Withthein-depthresearchon6Gnetworkandkeytechnologies,itsintegrationandapplicationwithQuantumInformationTechnologies(QITs)willbecomethefocusinthe
future.
In6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.Inthefirstpart,thiswhitepapergivesanoverviewofQuantumSecureCommunication.Startingwithenablingtechnologiesofquantumkeydistribution(QKD),standardizationactivitiesforQKDanditsnetworkingtechnologiesarepresented,followedbyimplicationsofQKDfor6G.Inparticular,twotypicalapplicationsscenariosareintroduced.OneisthequantumencryptionsystemthatwillbeappliedtotheconstructionofWinterOlympicsSmartParkandXiong'anNewArea.TheotherisinXiong’anquantumcommunicationpilot,whereaquantumcommunicationtrunklinebetweenBeijingandXiong’anwillbedeployed,andaquantumkeydistributionplatformwillbeintroducedtoprovidesecuritykeysforcustomersinthefieldsofInternetofthings,Internetof
vehicles,smartenergy,smartgovernmentandsoon.
Theprovisionsofamany-foldincreaseinthe6Gcommunicationsystemperformancealongsidewithrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQuantumMachineLearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthesecondpart,followedbypreliminaryknowledgesofmachinelearning(ML)basicparadigmsandtheirapplicationinsolvingproblemacrossdifferentlayersofincommunicationsystems,andquantumtools,this
whitepaperpresentsexamplestogetinsightintotheresearchofQML.
3/33
TableofContents
ExecutiveSummary
2
1Introduction
4
2QuantumSecureCommunication
6
2.1EnablingTechnologiesforQuantumSecureCommunication
6
2.1.1OverallPicture
6
2.1.2TypesofQKD
6
2.1.3TheNeededOptoelectronicComponentsofQKDandtheLow-Cost
Implementation
8
2.2StandardizationActivitiesforQKDN
1
0
2.2.1ITU-T
1
1
ITU-TStudyGroup11
1
1
ITU-TStudyGroup13
1
1
ITU-TStudyGroup17
1
4
2.2.2ETSIISG-QKD
1
6
2.2.3ISO/IECJTC1/SC27
1
7
2.3Implicationsfor6G
1
8
2.3.1State-of-the-artofQKDin5G
1
8
2.3.2Integrationof6GandQITs
1
9
2.3.3TypicalApplicationScenariosofQKD
2
0
3QuantumMachineLearning(QML)
2
3
3.1MachineLearningforCommunicationSystems
2
4
3.2QuantumTools
2
6
3.3QMLforCommunicationSystems
2
7
3.3.1Quantum-enhancedMachineLearning
2
7
3.3.2MachineLearningofQuantumSystems
2
8
3.3.3QuantumLearningTheory
2
8
4Reference
3
0
Acknowledgement
3
2
Abbreviation
3
2
4/33
1Introduction
Thescopeofthisannuallyrevisedwhitepaperistointroducequantuminformationtechnologies(QITs)withtheaimoftakingadvantagesoftheirpowerfulinformationprocessingcapabilitiestofulfilstringentdemandsofcommunicationandcomputingenvisagedby6Gsystems.Ourpreviousversionin2020presenttheoverviewofQITsfromtheperspectivesofQITs&QuantumInternetandQTIsforClassicalSignalProcessing,respectively.Theversionof2021willfurtherintroducefromtwobenefitsexpectedfromQITstocommunicationsystems,i.e.,secure
communicationandenhancedinformationprocessingcapability.
Chapter2.QuantumSecureCommunication
In6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.Chapter2givesanoverviewofQuantumSecureCommunication.Startingwithenablingtechnologiesofquantumkeydistribution(QKD),standardizationactivitiesforQKDanditsnetworkingtechnologiesarepresented,followedbyimplicationsofQKDfor6G.Inparticular,twotypicalapplicationsscenariosareintroducedasdeployingquantumencryptionsystemanddeployingquantumcommunicationtrunklineinprovidingsecuritykeysforcustomersinthefieldsofInternetof
things,Internetofvehicles,smartenergy,smartgovernmentandsoon.
Chapter3.QuantumMachineLearning(QML)
Theprovisionsofamany-foldincreaseinthe6Gcommunicationsystemperformancealongsidewithrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQMLhasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Chapter3startswiththeconceptsofQMLonahigh
levelandthendiscussesmachinelearning(ML)basicparadigmsandtheirapplicationinsolving
5/33
problemacrossdifferentlayersofincommunicationsystems.Followedbypreliminaryknowledgesofquantumtools,Chapter3presentsexamplestogetinsightintotheresearchofQML.Consequently,QMLforcommunicationsystemscanbeobtainedbyMLfor
communicationsystembeingsynergywithquantumspeedup.
6/33
2QuantumSecureCommunication
2.1EnablingTechnologiesforQuantumSecureCommunication
2.1.1OverallPicture
Quantumsecurecommunicationmeanscombingthesecretkeygeneratedfromquantumkeydistribution(QKD)devicewithexistingsymmetricencryptor.Thedistributionprocessofthe
secretkeyisguaranteedbylawofquantummechanics.
Figure2.1Quantumsecurecommunication,asystemview
2.1.2TypesofQKD
ThetypesofQKDcanbecategorizedbythebehavioroftransmitterandreceiver,alsotheusageofphysicaldegreeoffreedom.Basedonthebehavioroftransmitterandreceiver,theQKDtypesareprepare-and-measure,twotransmitterstoonecommonreceiver(Measurement-device-independent(MDI)QKD,twin-field(TF)QKD),onecommon
entanglement-basedtransmittertotworeceivers(EntanglementbasedQKD),showninFigure2.2.
7/33
Figure2.2TypesofQKDintermsofthebehaviorofTxandRx
Theprepare-and-measurementQKDismostcommerciallymaturedoneanditcanbefurther
dividedintotwotypes:DV-QKDandCV-QKD,asshowninTable2-1.
Table2-1DV-QKDandCV-QKD,acomparison
DiscreteVariableQKD(DV-QKD)
ContinuousVariableQKD(CV-QKD)
?MaximumBaudrateat1.25Ghzfor
product
?MaximumBaudrateat10Ghzrecord
?Basedonsinglephotondetection
?Degreeoffreedom:polarization,timebin+phase,frequency
?Darkfiberpreferred,goodathighlosschannel
?Co-existencewithdatacommunicationpossible,lowtolerance.
?Relativelysimplepost-processing
?RecordfromUniv.Geneva:6.5bps@69.3dB
?MaximumBaudratenomorethan
100Mhzforproduct
?MaximumBaudratearound1Ghzrecord
?Basedoncoherentdetection
?Degreeoffreedom:In-phasecomponentandquadratureofEMfield
?Darkfiberisnotamust,goodatlowlosschannel
?Co-existencewithdatacommunicationpossible,hightolerance
?Complexpost-processing
?RecordfromBUPT&PKU:6.2bps@32.45dB
8/33
Phys.Rev.Lett.121,190502(2018)
Phys.Rev.Lett.125,010502(2020)
2.1.3TheNeededOptoelectronicComponentsofQKDandtheLow-Cost
Implementation
InFigure2.3,ThethreetypicalQKDsystemsusingphoton’sphysicaldegreeoffreedomarelisted:DV-QKDPolarization,DV-QKDTime-Phase,CV-QKDTransmittedLocalOscillator(TLO).ThesourceofhighcostcomesfromtheusageofLithiumniobatemodulator,electricpolarizationcontroller,fiber-basedAsymmetricMZIandsinglephotondetector.ThankstotherapidprogressofsiliconphotonicchipandIII-Vmaterialphotonicchipdevelopmentrecentyears,theQKDcanbenefitfromlow-costdevice.InFigure2.4,anexampleisshownhowthetraditionwayofmodulatingtheintensityandpolarizationofthequantumsignalcarriercanbeshrinkintoa
smalldevice.
Figure2.3CostissuewithQKDsystem
9/33
Figure2.4ShrinkthesizeoftraditioncomponentintoasmalldeviceforQKD
WithcompactsiliconphotonicschipandIII-Vcomponents(Figure2.5)andapplication-specificintegratedcircuit(ASICs),thefulloptoelectronicfunctionscanbepackagedintoastandardCform-factorpluggable(CFP)sizemodulethatiswidelyusedintraditionalopticalcommunicationindustry,whichimpliesstandardandcost-effectiveQKDTxmoduleandQKDRxmodulearefeasibleinthenearfuture.ThentheQKDfunctionscanberealizedviaCFPQKDmodulewithon-boardcomputationelectronics,thiswillbenefittheimplementationof
quantumsecurecommunicationsystemintermsofsize,costandflexibility(Figure2.6).
Figure2.5CompactIII-Vmaterialbasedsinglephotondetector
10/33
Figure2.6ThefutureofstandardCFPQKDmodule
2.2StandardizationActivitiesforQKDN
QKDanditsnetworkingtechnologieshaveattractedalotofinterestinmultipleSDOs,e.g.,ISO,IEC,ITU,IEEE,IETF,ETSI,asshownin2.7.ThestatusofQuantumKeyDistributionNetworks(QKDN)standardizationindifferentSDOswillbebrieflyreviewedinthefollowing
sub-clauses.
11/33
Figure2.7QKDNstandardizationtimeline
2.2.1ITU-T
ITU-TisthefirstSDOtostandardizeQKDasanetworksince2018.Atthetimeofthisreport’spublication,ITU-TStudyGroups13and17hadcumulativelyinitiated18workitemson
thenetworkandsecurityandaspectsofQKDnetworks,respectively.
ITU-TStudyGroup11
Atthetimeofthisreport’spublication,SG11hadinitiated1workitemsonQKDNforstudy,
aslistedinTable2-2.
Table2-2:QKDrelatedworkitemsinITU-TSG11
Q
Reference
Title
Type
Status
Q2/11
Q.QKDN_profr
Quantumkeydistributionnetworks–Protocol
framework
Recommendation
Under
development
ITU-TStudyGroup13
Atthetimeofthisreport’spublication,SG13hadadopted5standardsonQKDN,including
12/33
theQKDNoverview(Y.3800),functionalrequirements(Y.3801),functionalarchitecture(Y.3802),keymanagement(Y.3803),controlandmanagement(Y.3804)andinitiated17work
itemsonQKDNforstudy,aslistedinTable2-3.
Table2-3:QKDrelatedworkitemsinITU-TSG13
Q
Reference
Title
Type
Status
Q16/13
Y.3800
Overviewon
networkssupportingquantumkey
distribution
Recommendation
Published
(2019-11)
Q16/13
Y.3801
Functional
requirementsfor
quantumkey
distributionnetwork
Recommendation
Published
(2020-07)
Q16/13
Y.3802
Quantumkey
distributionnetworks
-Functional
architecture
Recommendation
Published
(2021-04)
Q16/13
Y.3803
Quantumkey
distributionnetworks
-Keymanagement
Recommendation
Published
(2021-03)
Q16/13
Y.3804
QuantumKey
Distribution
Networks-Control
andManagement
Recommendation
Published
(2021-01)
Q16/13
Y.3805
QuantumKey
Distribution
Networks-SoftwareDefinedNetworkingControl
Recommendation
Under
development
Q6/13
Y.3806
Requirementsfor
QoSAssuranceof
theQuantumKey
DistributionNetwork
Recommendation
Under
development
Q16/13
Y.Sup70
ITU-TY.3800-series
-Quantumkey
distributionnetworks
Supplement
Published
(2021-09)
13/33
Q
Reference
Title
Type
Status
-Applicationsof
machinelearning
Q16/13
Y.QKDN_BM
QuantumKey
Distribution
Networks-Business
role-basedmodels
Recommendation
Under
development
Q16/13
Y.QKDN_frint
Frameworkfor
integrationofQKDNandsecurestorage
network
Recommendation
Under
development
Q16/13
Y.QKDN-iwfr
Quantumkey
distributionnetworks
-interworking
framework
Recommendation
Under
development
Q16/13
Y.QKDN-ml-fra
QuantumKey
Distribution
Networks-
Functional
requirementsand
architecturefor
machinelearning
Recommendation
Under
development
Q6/13
Y.QKDN-qos-fa
Functional
architectureofQoSassurancefor
quantumkey
distributionnetworks
Recommendation
Under
development
Q6/13
Y.QKDN-qos-gen
GeneralAspectsofQoS(Qualityof
Service)onthe
QuantumKey
DistributionNetwork
Recommendation
Under
development
Q6/13
Y.QKDN-qos-ml-req
Requirementsof
machinelearning
basedQoSAssuranceforquantumkey
distributionnetworks
Recommendation
Under
development
Q16/13
Y.QKDN-rsfr
Quantumkey
Recommendation
Under
14/33
Q
Reference
Title
Type
Status
distributionnetworks
-resilience
framework
development
Q16/13
Y.supp.QKDN-roadmap
Standardization
roadmaponQuantumKeyDistribution
Networks
Supplement
Under
development
ThestructureofworkonQKDNstandardizationinSG13isillustratedinFigure2.8.
Figure2.8:QKDNstandardizationworkitemsinSG13
ITU-TStudyGroup17
SG17establishedanewQuestion,Q15/17,Securityfor/byemergingtechnologiesincludingquantum-basedsecurity,approvedbyTSAG’sSeptember2020meeting.TheQ15/17termsof
referenceareavailableat[1].
Atthetimeofthisreport’spublication,SG17hadadopted3standardsonQKDNandQRNG,
includingQKDNsecurityframework(X.1710),keycombinationandconfidentialkeysupply
15/33
(X.1714)andQRNGarchitecture(X.1702),andinitiated10workitemsonQKDNforstudy,as
listedinTable2-4.
Table2-4:QKDrelatedworkitemsinITU-TSG17
Reference
Title
Type
Status
X.1702
Quantumnoiserandomnumbergeneratorarchitecture
Recommendation
Published
(2019-11)
X.1710
Securityframeworkforquantumkeydistributionnetworks
Recommendation
Published
(2020-10)
X.1714
Keycombinationandconfidentialkeysupplyforquantumkey
distributionnetworks
Recommendation
Published
(2020-10)
XSTR-SEC-QKD
Securityconsiderationsforquantumkeydistributionnetwork
TechnicalReport
Published
(2020-03)
X.1712
SecurityrequirementsandmeasuresforQKDnetworks-key
management
Recommendation
Under
development
X.sec_QKDN_AA
Authenticationandauthorizationin
QKDNusingquantumsafe
cryptography
Recommendation
Under
development
X.sec_QKDN_CM
Securityrequirementsandmeasuresforquantumkeydistribution
networks-controlandmanagement
Recommendation
Under
development
X.sec_QKDN_intrq
Securityrequirementsfor
integrationofQKDNandsecurenetworkinfrastructures
Recommendation
Under
development
X.sec_QKDN_tn
SecurityrequirementsforQuantumKeyDistributionNetworks-trustednode
Recommendation
Under
development
TR.hybsec-qkdn
TechnicalReport:Overviewofhybridsecurityapproaches
applicabletoQKD
TechnicalReport
Under
development
ThestructureofworkonQKDNstandardizationinSG17isillustratedinFigure2.9.
16/33
Figure2.9:QKDNstandardizationworkitemsinSG17
2.2.2ETSIISG-QKD
ETSIinitiatedtheindustryspecificationgroup(ISG)onQKDin2008.ETSIISG-QKDhaspublishedninespecificationsonQKDuntil2019andhaveseveralworkitemsongoingaslistedinTable2-5.ThepreviousworkmainlyfocusedonQKDlink-levelissues,includingQKDopticalcomponents,modules,internalandapplicationinterfaces,practicalsecurity,etc.NotethatETSIhasalsoinitiatedthestudyofQKDnetworkarchitecturesrecentlyandthespecificationofQKD
securitycertificationbasedoncommoncriteria.
Table2-5:QKDrelatedworkitemsinETSI
Reference
Title
Status
GSQKD002
QuantumKeyDistribution(QKD);UseCases
Published
(2010-06)
GRQKD003
QuantumKeyDistribution(QKD);ComponentsandInternalInterfaces
Published
(2018-03)
GSQKD004
QuantumKeyDistribution(QKD);ApplicationInterface
Published
(2010-12)
GSQKD005
QuantumKeyDistribution(QKD);SecurityProofs
NOTE–Revisioninprogress
Published
(2010-12)
GRQKD007
QuantumKeyDistribution(QKD);Vocabulary
Published
(2018-12)
17/33
Reference
Title
Status
NOTE–Revisioninprogress
GSQKD008
QuantumKeyDistribution(QKD);QKDModuleSecuritySpecification
Published
(2010-12)
GSQKD011
QuantumKeyDistribution(QKD);Componentcharacterization:
characterizingopticalcomponentsforQKDsystems
Published
(2016-05)
GSQKD012
QuantumKeyDistribution(QKD)DeviceandCommunicationChannelParameters
forQKDDeployment
Published
(2019-02)
GSQKD014
QuantumKeyDistribution(QKD);
ProtocolanddataformatofkeydeliveryAPItoApplications;
Published
(2019-02)
GSQKD015
QuantumKeyDistribution(QKD);
QuantumKeyDistributionControl
InterfaceforSoftwareDefinedNetworks
Published
(2021-03)
DGS/QKD-0010_ISTrojan
QuantumKeyDistribution(QKD);
Implementationsecurity:protection
againstTrojanhorseattacksinone-wayQKDsystems
Under
development
DGS/QKD-0013_TransModChar
QuantumKeyDistribution(QKD);
CharacterisationofOpticalOutputofQKDtransmittermodules
Under
development
DGS/QKD-016-PP
QuantumKeyDistribution(QKD);
CommonCriteriaProtectionProfilefor
QKD
Under
development
DGR/QKD-017NwkArch
QuantumKeyDistribution(QKD);Networkarchitectures
Under
development
DGS/QKD-018OrchIntSDN
QuantumKeyDistribution(QKD);OrchestrationInterfaceofSoftware
DefinedNetworks
Under
development
2.2.3ISO/IECJTC1/SC27
ISO/IECJTC1/SC27initiatedthestudyperiod"Securityrequirements,testandevaluation
18/33
methodsforquantumkeydistribution"in2017.In2019,thestudyperiodwascompleted,anda
newworkitemISO/IEC23837(Part1&2)wasestablishedaslistedinTable2-6.
Table2-6:QKDrelatedworksitemsinISO/IECJTC1
Reference
Title
Status
ISO/IEC
23837-1
Securityrequirements,testandevaluationmethodsforquantumkeydistributionPart1:requirements
Under
development
ISO/IEC
23837-2
Securityrequirements,testandevaluationmethodsforquantumkeydistributionPart2:testandevaluation
methods
Under
development
2.3Implicationsfor6G
2.3.1State-of-the-artofQKDin5G
In5Gera,theimportanceofcybersecurityinmobilecommunicationswillriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.SomemobileoperatorshaveappliedencryptiontechnologyusingQKDto5Gnetworks,forexample,inApril2021,SKTelecom(SKT)anditssubsidiaryIDQuantique(IDQ),aGeneva-basedleaderinquantum-safecryptography,havedevelopedaquantumvirtualprivatenetwork(VPN)basedontheQKD.VPNisasecuredcommunicationschannelimplementedovershared,publicnetworkstoconnectremoteusersandmachinestoaprivatenetwork.QKDisasecurecommunicationmethodthatimplementsacryptographicprotocolinvolvingcomponentsofquantummechanics[2].In6G,
withthedevelopmentoftechnology,itmaturesdaybyday.
Inordertoresistthepotentialimpactontheclassiccryptographysystem,256bitsalgorithmswillbeendorsedtoreplacethe128bitsalgorithms.In5G,the128bitsalgorithmsNRIntegrityAlgorithm(NIA)/NREncryptionAlgorithm(NEA)1/2/3areusedfortheAccessStratum(AS)andNon-AccessStratum(NAS)securityprotectionbasedonthesharedkey,meanwhilethe
corresponding256bitsalgorithmsarealreadyunderinvestigationin3GPPSA3andETSI
19/33
SecurityAlgorithmsGroupofExperts(SAGE).Thenew256bitsalgorithmswillprobablybeintroducedin6Gera.AES-256willbeoneofthecandidates,evenwithcurrentlyknownquantumalgorithmslikeGrover's,NationalInstituteofStandardsandTechnology(NIST)believesthatAES256keyswillstillbesafeforaverylongtimeandrecommendsthatcurrentapplicationscan
continuetouseAESwithkeysizes128,192,or256bits[3].
Forasymmetricalgorithms,e.g.,EllipticCurve-BasedCertificatelessSignaturesforIdentity-BasedEncryption(ECCSI),RSA,theyarewidelyusedin5GsystemandInternetservices.
NISThasinitiatedaprocesstosolicit,evaluate,andstandardizeoneormore
quantum-resistantpublic-keycryptographicalgorithms.Itisintendedthatthenewpublic-keycryptographystandardswillspecifyoneormoreadditionalunclassified,publiclydiscloseddigitalsignature,public-keyencryption,andkey-establishmentalgorithmsthatareavailableworldwide,andarecapableofprotectingsensitivegovernmentinformationwellintotheforeseeablefuture,includingaftertheadventofquantumcomputers.ItwasplannedtogetthedraftstandardsonPost-QuantumCryptography(PQC)availableat2022-2024.ThisisthemostcriticalissuetostandardizethemoststableandsecurePQCbeforedeployingthemintothe6G.Earlyadoptionofpostquantumalgorithmswouldbebothverycomplex,andyetresultinpotentiallyuncertain
securityguarantees.
2.3.2Integrationof6GandQITs
Thecompositionof6Gnetworkrequireshigh-precisiondatacapability,computingcapabilityandsecurity,whichcanbeenabledbyquantumtechnologiessuchasquantumprecision
measurement,quantumcomputingandquantumcommunication.
(1)Quantumcomputingwillhelp6Gmaximizespectrumutilizationandimproveresource
allocationefficiency.
Inthe6Gera,thewirelessindustrymayre-examinethetraditionalspectrumallocation
mechanismandfurtherevolvethedynamicspectrumsharingtechnology.Throughtheuseof
20/33
ArtificialIntelligence,Blockchainandothertechnologies,moreintelligentanddynamicspectrumallocation,controlandschedulingcanberealizedtomaximizespectrumutilization.Quantumcomputingwillachieveoptimalwirelessresourceallocationandcellplanningandimproveenergy
efficiencyandspectrumefficiency.
(2)Quantumprivatecommunicationtechnologyensuresnetworkdatasecurityand
supportsthedevelopmentofdigitaleconomy.
Traditionalcryptographybasedoncomputationalcomplexitywillfacethethreatofquantumcomputerattacksinthe6Gera.Enhancedcryptographysuchasquantumkeyandwirelessphysicallayerkeywillprovideastrongersecurityguaranteefor6G.Inthefuture,6Gnetworkswillrelyonlightweightaccessauthentication,quantumkey,blockchainandotheradvanced
securitytechnologiestoprovideactivedefensefornetworkinfrastructure.
2.3.3TypicalApplicationScenariosofQKD
Quantumencryptedcommunicationcanbeappliedtoprotectthedataacquisitionandprocessingsystemofinfrastructure,ensuringthesecurityofdatacommunication.Itcanbewidely
usedinfrontierfieldssuchasdigitaltwins,smartparks,blockchainsandsoon.
Takingthemanagementandschedulingofthesmartparkasanexample,collectandanalyzetheenvironmentalinformationoftheparkthroughsensingequipment(camera,radar),roadsideunitandpositioningreferencestation,andbuildabusinesssystembasedon'vehicle-road-human-cloudcollaboration’,whichcanrealizetheefficientandfastmanagementofpersonnel,materialsandequipmentinthepark.Thecollecteddataiscloselyrelatedtothemanagementabilityofthepark,anditsauthenticityandintegritycanbeprotectedbyquantumkey
distribution.
21/33
Figure2.10DataEncryptionofSmartParkBasedonQuantumSecuritySystem
DatatransmissionwiththequantumencryptionsystemisshownintheFigure2.10.Thequantumkeydistributionsystemprovideskeysforreliableauthenticationanddataencryptionofvideo,pictures,pointclouddata,trafficinformation,locationinformationandotherdataofthepark.Thequantumkeydistributionsystemcanalsochangethekeyaccordingtothespecificbusinessrequirements,realizingtheintelligentmanagementoftheparkandsecuredatatransmission.Inthefuture,thequantumencryptionsystemwillbeappliedtotheconstructionof
WinterOlympicsSmartParkandXiong'anNewArea.
Forexample,inXiong’anquantumcommunicationpilotasillustratedbyFigure2.11,aquantumcommunicationtrunklinebetweenBeijingandXiong’anwillbedeployed,anda
quantumkeydistributionplatformwillbeintroducedtoprovidesecuritykeysforcustomersinthe
22/33
fieldsofInternetofthings(IoT),Internetofvehicles(IoV),smartenergy,smartgovernmentandsoon.Thequantumkeydistributionplatformandtheserviceapplicationservercanbedeployedtogetherwithoutchangingtheoriginalnetworktopology,andtheencryptedbusinessisstill
transmittedintheoriginalservicechannels.
Figure2.11QuantumCommunicationPilotinXiong'an
23/33
3QuantumMachineLearning(QML)
Itishighlyexpectedthatthe6thgeneration(6G)communicationsystemswilllayafoundationofpervasivedigitization,ubiquitousconnectionandfullintelligence.Theprovisionsofamany-foldincreaseinthecommunicationsystemperformanceandrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQuantumMachineLearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthefollowing,westartwiththeconceptsofQMLonahighlevelandthendiscussmachinelearning(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 親子培訓總結(jié)
- 市場主管年終工作總結(jié)
- 我們上路了課件
- 幼師師風師德培訓
- 拍賣利潤分配協(xié)議
- 回款協(xié)議書(2篇)
- 教科版(2017)科學五年下冊《做個保溫杯》說課(附反思、板書)課件
- 企業(yè)管理決策概述
- 《植物通過光合作用固定光能》說課課件-2024-2025學年濟南版(2024)初中生物學七年級下冊
- 企業(yè)科學管理方法
- 心電圖考試題及答案
- JGT266-2011 泡沫混凝土標準規(guī)范
- 合理自我分析報告RSA
- 質(zhì)量管理的標準管理規(guī)程SMP
- 鐵總建設(shè)201857號 中國鐵路總公司 關(guān)于做好高速鐵路開通達標評定工作的通知
- 財產(chǎn)保險實務(wù)-教案項目1、2走進財產(chǎn)保險、企業(yè)財產(chǎn)保險
- 化學動力學基礎(chǔ)(二)課件
- 中國飲食文化PPT完整全套教學課件
- 2023年04月江蘇南通市紅十字會機關(guān)招考聘用政府購買服務(wù)崗位人員筆試參考題庫附答案解析
- IATF16949-過程審核檢查表-(含審核記錄)-
- 環(huán)保處罰陳述申辯范本
評論
0/150
提交評論