版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省蘇州市吳江區(qū)震澤中學數(shù)學高一下期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.2.《九章算術》卷第五《商功》中,有問題“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈.問積幾何?”,意思是:“今有底面為矩形的屋脊狀的楔體,下底面寬丈,長丈;上棱長丈,無寬,高丈(如圖).問它的體積是多少?”這個問題的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈3.設變量滿足約束條件,則目標函數(shù)的最小值為()A. B. C. D.24.設正項等比數(shù)列的前項和為,若,,則公比()A. B. C. D.5.在△ABC中,角A,B,C的對邊分別為a,b,c,若,,則在方向上的投影為()A.1 B.2 C.3 D.46.等比數(shù)列的各項均為正數(shù),且,則()A. B. C. D.7.如圖,設是正六邊形的中心,則與相等的向量為()A. B. C. D.8.已知數(shù)列的前項和滿足.若對任意正整數(shù)都有恒成立,則實數(shù)的取值范圍為()A. B. C. D.9.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形10.一條直線經(jīng)過點,并且它的傾斜角等于直線傾斜角的2倍,則這條直線的方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線平面,,那么在平面內過點P與直線m平行的直線有________條.12.計算__________.13.一個圓錐的側面積為,底面積為,則該圓錐的體積為________.14.直線與直線的交點為,則________.15.已知,各項均為正數(shù)的數(shù)列滿足,,若,則的值是.16.已知,則的最小值是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:二者點數(shù)相同的概率;兩數(shù)之積為奇數(shù)的概率;二者的數(shù)字之和不超過5的概率.18.已知等差數(shù)列與等比數(shù)列滿足,,且.(1)求數(shù)列,的通項公式;(2)設,是否存在正整數(shù),使恒成立?若存在,求出的值;若不存在,請說明理由.19.如圖,是正方形,是該正方形的中心,是平面外一點,底面,是的中點.求證:(1)平面;(2)平面平面.20.某校從高一(1)班和(2)班的某次數(shù)學考試的成績中各隨機抽取了6份數(shù)學成績組成一個樣本,如莖葉圖所示(試卷滿分為100分)(1)試計算這12份成績的中位數(shù);(2)用各班的樣本方差比較兩個班的數(shù)學學習水平,哪個班更穩(wěn)定一些?21.已知函數(shù)f(x)=sinωx·cosωx+cos2ωx-(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為.(Ⅰ)求f(x)的表達式;(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調減區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)程序框圖列出算法循環(huán)的每一步,結合判斷條件得出輸出的的值.【詳解】執(zhí)行如圖所示的程序框圖如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循環(huán)體,輸出的值為,故選C.【點睛】本題考查利用程序框圖計算輸出結果,對于這類問題,通常利用框圖列出算法的每一步,考查計算能力,屬于中等題.2、A【解析】過點分別作平面和平面垂直于底面,所以幾何體的體積分為三部分中間是直三棱柱,兩邊是兩個一樣的四棱錐,所以立方丈,故選A.3、B【解析】
根據(jù)不等式組畫出可行域,數(shù)形結合解決問題.【詳解】不等式組確定的可行域如下圖所示:因為可化簡為與直線平行,且其在軸的截距與成正比關系,故當且僅當目標函數(shù)經(jīng)過和的交點時,取得最小值,將點的坐標代入目標函數(shù)可得.故選:B.【點睛】本題考查常規(guī)線性規(guī)劃問題,屬基礎題,注意數(shù)形結合即可.4、D【解析】
根據(jù)題意,求得,結合,即可求解,得到答案.【詳解】由題意,正項等比數(shù)列滿足,,即,,所以,又由,因為,所以.故選:D.【點睛】本題主要考查了的等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式的應用,其中解答中熟記等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式,合理運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、A【解析】
根據(jù)正弦定理,將已知條件進行轉化化簡,結合兩角和差的正弦公式可求,根據(jù)在方向上的投影為,代入數(shù)值,即可求解.【詳解】因為,所以,即,即,因為,所以,所以,所以在方向上的投影為:.故選:A.【點睛】本題主要考查正弦定理和平面向量投影的應用,根據(jù)正弦定理結合兩角和差的正弦公式是解決本題的關鍵,屬于中檔題.6、D【解析】
本題首先可根據(jù)數(shù)列是各項均為正數(shù)的等比數(shù)列以及計算出的值,然后根據(jù)對數(shù)的相關運算以及等比中項的相關性質即可得出結果.【詳解】因為等比數(shù)列的各項均為正數(shù),,所以,,所以,故選D.【點睛】本題考查對數(shù)的相關運算以及等比中項的相關性質,考查的公式為以及在等比數(shù)列中有,考查計算能力,是簡單題.7、D【解析】
容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點睛】本題考查相等向量概念辨析,屬于基礎題.8、C【解析】
先利用求出數(shù)列的通項公式,于是可求出,再利用參變量分離法得到,利用數(shù)列的單調性求出數(shù)列的最小項的值,可得出實數(shù)的取值范圍.【詳解】當時,,即,得;當時,由,得,兩式相減得,得,,所以,數(shù)列為等比數(shù)列,且首項為,公比為,.,由,得,所以,數(shù)列單調遞增,其最小項為,所以,,因此,實數(shù)的取值范圍是,故選C.【點睛】本題考查利用數(shù)列前項和求數(shù)列的通項,其關系式為,其次考查了數(shù)列不等式與參數(shù)的取值范圍問題,一般利用參變量分離法轉化為數(shù)列的最值問題來求解,考查化歸與轉化問題,屬于中等題.9、B【解析】
先化簡sinAcosB=sinC=,即得三角形形狀.【詳解】由sinAcosB=sinC得所以sinBcosA=0,因為A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案為A【點睛】本題主要考查三角恒等變換和三角函數(shù)的圖像性質,意在考查學生對這些知識的掌握水平和分析推理能力.10、B【解析】
先求出直線的傾斜角,進而得出所求直線的傾斜角和斜率,再根據(jù)點斜式寫直線的方程.【詳解】已知直線的斜率為,則傾斜角為,故所求直線的傾斜角為,斜率為,由直線的點斜式得,即。故選B.【點睛】本題考查直線的性質與方程,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
利用線面平行的性質定理來進行解答.【詳解】過直線與點可確定一個平面,由于為公共點,所以兩平面相交,不妨設交線為,因為直線平面,所以,其它過點的直線都與相交,所以與也不會平行,所以過點且平行于的直線只有一條,在平面內,故答案為:1.【點睛】本題考查線面平行的性質定理,是基礎題.12、【解析】
采用分離常數(shù)法對所給極限式變形,可得到極限值.【詳解】.【點睛】本題考查分離常數(shù)法求極限,難度較易.13、【解析】
設圓錐的底面半徑為,母線長為,由圓錐的側面積、圓面積公式列出方程組求解,代入圓錐的體積公式求解.【詳解】設圓錐的底面半徑為,母線長為,其側面積為,底面積為,則,解得,,∴高===,∴==.故答案為:.【點睛】本題考查圓錐的體積的求法,考查圓錐的側面積、底面積、體積公式等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】
(2,2)為直線和直線的交點,即點(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進而得a+b的值?!驹斀狻恳驗橹本€與直線的交點為,所以,,即,,故.【點睛】本題考查求直線方程中的參數(shù),屬于基礎題。15、【解析】
由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點:數(shù)列的遞推公式.16、【解析】分析:利用題設中的等式,把的表達式轉化成,展開后,利用基本不等式求得y的最小值.詳解:因為,所以,所以(當且僅當時等號成立),則的最小值是,總上所述,答案為.點睛:該題考查的是有關兩個正數(shù)的整式形式和為定值的情況下求其分式形式和的最值的問題,在求解的過程中,注意相乘,之后應用基本不等式求最值即可,在做乘積運算的時候要注意乘1是不變的,如果不是1,要做除法運算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】
把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,利用列舉法求出事件A中包含6個基本事件,由此能求出二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,利用列舉法求出事件B中含有9個基本事件,由此能求出兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,利用列舉法求出事件C中包含的基本事件有10個,由此能求出二者的數(shù)字之和不超過5的概率.【詳解】解:把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,則事件A中包含6個基本事件,分別為:,,,,,,二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,則事件B中含有9個基本事件,分別為:,,,,,,,,,兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,由事件C中包含的基本事件有10個,分別為:,,,,,,,,,,二者的數(shù)字之和不超過5的概率.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎知識,考查運算求解能力,是基礎題.18、(1),.(2)存在正整數(shù),,證明見解析【解析】
(1)根據(jù)題意,列出關于d與q的兩個等式,解方程組,即可求出。(2)利用錯位相減求出,再討論求出的最小值,對應的n值即為所求的k值。【詳解】(1)解:設等差數(shù)列與等比數(shù)列的公差與公比分別為,,則,解得,于是,,.(2)解:由,即,①,②①②得:,從而得.令,得,顯然、所以數(shù)列是遞減數(shù)列,于是,對于數(shù)列,當為奇數(shù)時,即,,,…為遞減數(shù)列,最大項為,最小項大于;當為偶數(shù)時,即,,,…為遞增數(shù)列,最小項為,最大項大于零且小于,那么數(shù)列的最小項為.故存在正整數(shù),使恒成立.【點睛】本題考查等差等比數(shù)列,利用錯位相減法求差比數(shù)列的前n項和,并討論其最值,屬于難題。19、(1)見解析;(2)見解析.【解析】
(1)連接,證明后即得線面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如圖,連接,∵分別是中點,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【點睛】本題考查證明線面平行和面面垂直,掌握線面平行和面面垂直的判定定理是解題關鍵.20、(1)80;(2)(1)班.【解析】
(1)從莖葉圖可直接得到答案;(2)通過方差公式計算出兩個半的方差,方差更小的更穩(wěn)定.【詳解】(1)從莖葉圖中可以看到,這12份成績按從小到大排列,第6個是78,第7個是82,所以中位數(shù)為.(2)由表中數(shù)據(jù),易得(1)班的6份成績的平均數(shù),(2)班的6份成績的平均數(shù),所以(1)班的6份成績的方差為;(2)班的6份成績的方差為.所以有,說明(1)班成績波動較小,(2)班兩極分化較嚴重些,所以(1)班成績更穩(wěn)定.【點睛】本題主要考查中位數(shù),平均數(shù),方差的相關計算和性質,意在考查學生的計算能力及分析能力,難度不大.21、(1)f(x)=s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康醫(yī)療大健康產業(yè)服務平臺搭建及運營策略
- 2024年電子商務合作項目合同
- 化妝品品牌策劃及廣告投放服務協(xié)議
- 在線醫(yī)療健康服務平臺建設及運營方案設計
- 人工智能醫(yī)療設備研發(fā)與產業(yè)化合同
- 林業(yè)碳匯項目開發(fā)與交易合同
- 農業(yè)科技創(chuàng)新項目孵化合作協(xié)議
- 大數(shù)據(jù)分析人員招聘合同
- 農產品銷售合同
- 物流行業(yè)倉儲設施租賃合同
- 全國職業(yè)學校教師說課大賽一等獎電工技能與實訓《觸電急救方法說課》說課課件
- 小兒流感疾病演示課件
- 奔馳調研報告swot
- 中國教育史(第四版)全套教學課件
- 2024屆廣東省汕頭市高一數(shù)學第一學期期末達標檢測試題含解析
- 采購設備檢驗驗收單
- 福建省泉州實驗中學2024屆物理高一第一學期期末質量檢測試題含解析
- 公司領導班子設置方案
- 專業(yè)展覽展示設計搭建公司
- 為銅制劑正名-冠菌銅? 產品課件-9-7
- 具有磁場保鮮裝置的制冷設備的制作方法
評論
0/150
提交評論