2024屆函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2024屆函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2024屆函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2024屆函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2024屆函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)等比數(shù)列的公比,前項(xiàng)和為,則()A. B. C. D.2.方程的解集是()A. B.C. D.3.已知函數(shù)圖象的一條對稱軸是,則函數(shù)的最大值為()A.5 B.3 C. D.4.在直角中,,線段上有一點(diǎn),線段上有一點(diǎn),且,若,則()A.1 B. C. D.5.設(shè)a,b,c為的內(nèi)角所對的邊,若,且,那么外接圓的半徑為A.1 B. C.2 D.46.已知與的夾角為,,,則()A. B. C. D.7.下列關(guān)于函數(shù)()的敘述,正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.值域?yàn)镃.圖像關(guān)于點(diǎn)中心對稱D.不等式的解集為8.函數(shù)y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-19.設(shè)是△所在平面內(nèi)的一點(diǎn),且,則△與△的面積之比是()A. B. C. D.10.設(shè)函數(shù),若對任意的實(shí)數(shù)x都成立,則的最小值為()A. B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對的邊為,若,且的外接圓半徑為,則________.12.在等腰中,為底邊的中點(diǎn),為的中點(diǎn),直線與邊交于點(diǎn),若,則___________.13.已知兩點(diǎn)A(2,1)、B(1,1+)滿足=(sinα,cosβ),α,β∈(﹣,),則α+β=_______________14.某產(chǎn)品分甲、乙、丙三級,其中乙、丙兩級均屬次品,若生產(chǎn)中出現(xiàn)乙級品的概率為0.04,出現(xiàn)丙級品的概率為0.01,則對成品抽查一件抽得正品的概率為________.15.在數(shù)列中,若,(),則________16.已知,則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在一個盒子中裝有6支圓珠筆,其中3支一等品,2支二等品和1支三等品,從中任取3支.求(1)恰有1支一等品的概率;(2)恰有兩支一等品的概率;(3)沒有三等品的概率.18.如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為(1)求的值;(2)求的值.19.已知點(diǎn)是重心,.(1)用和表示;(2)用和表示.20.如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求證:平面⊥平面.21.已知分別是銳角三個內(nèi)角的對邊,且,且.(Ⅰ)求的值;(Ⅱ)求面積的最大值;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

利用等比數(shù)列的前n項(xiàng)和公式表示出,利用等比數(shù)列的通項(xiàng)公式表示出,計(jì)算即可得出答案?!驹斀狻恳?yàn)椋怨蔬xC【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,屬于基礎(chǔ)題。2、C【解析】

把方程化為,結(jié)合正切函數(shù)的性質(zhì),即可求解方程的解,得到答案.【詳解】由題意,方程,可化為,解得,即方程的解集為.故答案為:C.【點(diǎn)睛】本題主要考查了三角函數(shù)的基本關(guān)系式,以及三角方程的求解,其中解答中熟記正切函數(shù)的性質(zhì),準(zhǔn)確求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】

函數(shù)圖象的一條對稱軸是,可得,解得.可得函數(shù),再利用輔助角公式、倍角公式、三角函數(shù)的有界性即可得出.【詳解】函數(shù)圖象的一條對稱軸是,,解得.則函數(shù)當(dāng)時取等號.函數(shù)的最大值為1.故選.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用以及利用二倍角公式和輔助角公式進(jìn)行三角恒等變換.4、D【解析】

依照題意采用解析法,建系求出目標(biāo)向量坐標(biāo),用數(shù)量積的坐標(biāo)表示即可求出結(jié)果.【詳解】如圖,以A為原點(diǎn),AC,AB所在直線分別為軸建系,依題設(shè)A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【點(diǎn)睛】本題主要考查解析法在向量中的應(yīng)用,意在考查學(xué)生數(shù)形結(jié)合的能力.5、A【解析】

由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【詳解】∵,∴,整理得b2+c2-a2=bc,根據(jù)余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故選A【點(diǎn)睛】已知三邊關(guān)系,可轉(zhuǎn)化為接近余弦定理的形式,直接運(yùn)用余弦定理理解三角形,注意整體代入思想.6、A【解析】

將等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律和定義得出關(guān)于的二次方程,解出即可.【詳解】將等式兩邊平方得,,即,整理得,,解得,故選:A.【點(diǎn)睛】本題考查平面向量模的計(jì)算,在計(jì)算向量模的時候,一般將向量模的等式兩邊平方,利用平面向量數(shù)量積的定義和運(yùn)算律進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于中等題.7、D【解析】

運(yùn)用正弦函數(shù)的一個周期的圖象,結(jié)合單調(diào)性、值域和對稱中心,以及不等式的解集,可得所求結(jié)論.【詳解】函數(shù)(),在,單調(diào)遞增,在上單調(diào)遞減;值域?yàn)椋粓D象關(guān)于點(diǎn)對稱;由可得,解得:.故選:D.【點(diǎn)睛】本題考查三角函數(shù)的圖象和性質(zhì),考查邏輯思維能力和運(yùn)算能力,屬于??碱}.8、B【解析】

根據(jù)余弦函數(shù)有界性確定最值.【詳解】因?yàn)?1≤cosx≤1,所以【點(diǎn)睛】本題考查余弦函數(shù)有界性以及函數(shù)最值,考查基本求解能力,屬基本題.9、B【解析】試題分析:依題意,得,設(shè)點(diǎn)到的距離為,所以與的面積之比是,故選B.考點(diǎn):三角形的面積.10、B【解析】

對任意的實(shí)數(shù)x都成立,說明三角函數(shù)f(x)在時取最大值,利用這個信息求ω的值.【詳解】由題意,當(dāng)時,取到最大值,所以,解得,因?yàn)?,所以?dāng)時,取到最小值.故選:B.【點(diǎn)睛】本題考查正弦函數(shù)的圖象及性質(zhì),三角函數(shù)的單調(diào)區(qū)間、對稱軸、對稱中心、最值等為??碱},本題屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、或.【解析】

利用正弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由正弦定理可得,所以,,,或,故答案為或.【點(diǎn)睛】本題考查正弦定理的應(yīng)用,在利用正弦值求角時,除了找出銳角還要注意相應(yīng)的補(bǔ)角是否滿足題意,考查計(jì)算能力,屬于基礎(chǔ)題.12、;【解析】

題中已知等腰中,為底邊的中點(diǎn),不妨于為軸,垂直平分線為軸建立直角坐標(biāo)系,這樣,我們能求出點(diǎn)坐標(biāo),根據(jù)直線與求出交點(diǎn),求向量的數(shù)量積即可.【詳解】如上圖,建立直角坐標(biāo)系,我們可以得出直線,聯(lián)立方程求出,,即填寫【點(diǎn)睛】本題中因?yàn)橐阎走吋案叩拈L度,所有我們建立直角坐標(biāo)系,求出相應(yīng)點(diǎn)坐標(biāo),而作為F點(diǎn)的坐標(biāo)我們可以通過直線交點(diǎn)求出,把向量數(shù)量積通過向量坐標(biāo)運(yùn)算來的更加直觀.13、或0【解析】

運(yùn)用向量的加減運(yùn)算和特殊角的三角函數(shù)值,可得所求和.【詳解】兩點(diǎn)A(2,1)、B(1,1)滿足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即為sinα,cosβ,α,β∈(),可得α,β=±,則α+β=0或.故答案為0或.【點(diǎn)睛】本題考查向量的加減運(yùn)算和三角方程的解法,考查運(yùn)能力,屬于基礎(chǔ)題.14、0.95【解析】

根據(jù)抽查一件產(chǎn)品是甲級品、乙級品、丙級品是互為互斥事件,且三個事件對立,再根據(jù)抽得正品即為抽得甲級品的概率求解.【詳解】記事件A={甲級品},B={乙級品},C={丙級品}因?yàn)槭录嗀,B,C互為互斥事件,且三個事件對立,所以抽得正品即為抽得甲級品的概率為故答案為:0.95【點(diǎn)睛】本題主要考查了互斥事件和對立事件概率的求法,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.15、【解析】

由題意,得到數(shù)列表示首項(xiàng)為1,公差為2的等差數(shù)列,結(jié)合等差數(shù)列的通項(xiàng)公式,即可求解.【詳解】由題意,數(shù)列中,滿足,(),即(),所以數(shù)列表示首項(xiàng)為1,公差為2的等差數(shù)列,所以.故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列的定義和通項(xiàng)公式的應(yīng)用,其中解答中熟記等差數(shù)列的定義,合理利用數(shù)列的通項(xiàng)公式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點(diǎn)睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

(1)恰有一支一等品,從3支一等品中任取一支,從二、三等品種任取兩支利用分布乘法原理計(jì)算后除以基本事件總數(shù);(2)恰有兩枝一等品,從3支一等品中任取兩支,從二、三等品種任取一支利用分布乘法原理計(jì)算后除以基本事件總數(shù);(3)從5支非三等品中任取三支除以基本事件總數(shù).【詳解】(1)恰有一枝一等品的概率;(2)恰有兩枝一等品的概率;(3)沒有三等品的概率.【點(diǎn)睛】本題考查古典概型及其概率計(jì)算公式,考查邏輯思維能力和運(yùn)算能力,屬于??碱}.18、(1)(2)【解析】

試題分析:(1)根據(jù)題意,由三角函數(shù)的定義可得與的值,進(jìn)而可得出與的值,從而可求與的值就,結(jié)合兩角和正切公式可得答案;(2)由兩角和的正切公式,可得出的值,再根據(jù)的取值范圍,可得出的取值范圍,進(jìn)而可得出的值.由條件得cosα=,cosβ=.∵α,β為銳角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β為銳角,∴0<α+2β<,∴α+2β=19、(1)(2).【解析】

(1)設(shè)的中點(diǎn)為,可得出,利用重心性質(zhì)得出,由此可得出關(guān)于、的表達(dá)式;(2)由,得出,再由,可得出關(guān)于、的表達(dá)式.【詳解】(1)設(shè)的中點(diǎn)為,則,,為的重心,因此,;(2),,因此,.【點(diǎn)睛】本題考查利基底表示向量,應(yīng)充分利用平面幾何中一些性質(zhì),將問題中所涉及的向量利用基底表示,并結(jié)合平面向量的線性運(yùn)算法則進(jìn)行計(jì)算,考查分析問題和解決問題的能力,屬于中等題.20、(1)證明見解析;(2)證明見解析.【解析】

(Ⅰ)利用線面平行的判定定理,只需證明EF∥PA,即可;(Ⅱ)先證明線面垂直,CD⊥平面PAD,再證明面面垂直,平面PAD⊥平面PDC

即可.【詳解】(Ⅰ)證明:連結(jié)AC,在正方形ABCD中,F(xiàn)為BD中點(diǎn),正方形對角線互相平分,∴F為AC中點(diǎn),又E是PC中點(diǎn),在△CPA中,EF∥PA,且PA?平面PAD,EF?平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論