版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
寧夏中衛(wèi)市一中2023-2024學(xué)年數(shù)學(xué)高一下期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B. C. D.2.如圖,兩點為山腳下兩處水平地面上的觀測點,在兩處觀察點觀察山頂點的仰角分別為,若,,且觀察點之間的距離比山的高度多100米,則山的高度為()A.100米 B.110米 C.120米 D.130米3.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)4.秦九韶是我國南宋時期的數(shù)學(xué)家,在他所著的《數(shù)書九章》中提出的多項式求值的“秦九韶算法”,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法,求某多項式值的一個實例,若輸入的值分別為4和2,則輸出的值為()A.32 B.64 C.65 D.1305.已知向量,且,則().A. B.C. D.6.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°7.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)8.一只小狗在圖所示的方磚上走來走去,最終停在涂色方磚的概率為()A. B. C. D.9.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.10.如圖所示的陰影部分是由軸及曲線圍成,在矩形區(qū)域內(nèi)隨機取一點,則該點取自陰影部分的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中角所對的邊分別為,若則___________12.若向量,,且,則實數(shù)______.13.已知函數(shù)fx=cosx+2cosx,14.如圖中,,,,M為AB邊上的動點,,D為垂足,則的最小值為______;15.如果奇函數(shù)f(x)在[3,7]上是增函數(shù)且最小值是5,那么f(x)在[-7,-3]上是_________.①減函數(shù)且最小值是-5;②減函數(shù)且最大值是-5;③增函數(shù)且最小值是-5;④增函數(shù)且最大值是-516.若角的終邊經(jīng)過點,則的值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,,求△ABC的面積的最大值.18.如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,,,,點在棱上,且.(1)證明:平面;(2)求三棱錐的體積.19.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.20.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)21.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個實數(shù)解,求a的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)不等式的性質(zhì),一一分析選擇正誤即可.【詳解】根據(jù)不等式的性質(zhì),當(dāng)時,對于A,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若,則,故C錯誤;對于D,當(dāng)時,總有成立,故D正確;故選:D.【點睛】本題考查不等式的基本性質(zhì),屬于基礎(chǔ)題.2、A【解析】
設(shè)山的高度為,求出AB=2x,根據(jù),求出山的高度.【詳解】設(shè)山的高度為,如圖,由,有.在中,,有,又由觀察點之間的距離比山的高度多100,有.故山的高度為100.故選A【點睛】本題主要考查解三角形的實際應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.3、D【解析】
仔細(xì)觀察圖象,尋找散點圖間的相互關(guān)系,主要觀察這些散點是否圍繞一條曲線附近排列著,由此能夠得到正確答案.【詳解】散點圖(1)中,所有的散點都在曲線上,所以(1)具有函數(shù)關(guān)系;
散點圖(2)中,所有的散點都分布在一條直線的附近,所以(2)具有相關(guān)關(guān)系;
散點圖(3)中,所有的散點都分布在一條曲線的附近,所以(3)具有相關(guān)關(guān)系,
散點圖(4)中,所有的散點雜亂無章,沒有分布在一條曲線的附近,所以(4)沒有相關(guān)關(guān)系.
故選D.【點睛】本題考查散點圖和相關(guān)關(guān)系,是基礎(chǔ)題.4、C【解析】程序運行循環(huán)時變量值為:;;;,退出循環(huán),輸出,故選C.5、D【解析】
運用平面向量的加法的幾何意義,結(jié)合等式,把其中的向量都轉(zhuǎn)化為以為起點的向量的形式,即可求出的表示.【詳解】,,故本題選D.【點睛】本題考查了平面向量加法的幾何意義,屬于基礎(chǔ)題.6、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.7、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.8、C【解析】
方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可計算出所求事件的概率.【詳解】由圖形可知,方磚上共分為九個全等的正方形,涂色方磚為其中的兩塊,由幾何概型的概率公式可知,小狗最終停在涂色方磚的概率為,故選:C.【點睛】本題考查利用幾何概型概率公式計算事件的概率,解題時要理解事件的基本類型,正確選擇古典概型和幾何概型概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.9、B【解析】
試題分析:由題意得,,令,可得函數(shù)的圖象對稱軸方程為,取是軸右側(cè)且距離軸最近的對稱軸,因為將函數(shù)的圖象向左平移個長度單位后得到的圖象關(guān)于軸對稱,的最小值為,故選B.考點:兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì).【方法點晴】本題主要考查了兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì),將三角函數(shù)圖象向左平移個單位,所得圖象關(guān)于軸對稱,求的最小值,著重考查了三角函數(shù)的化簡、三角函數(shù)圖象的對稱性等知識的靈活應(yīng)用,本題的解答中利用輔助角公式,化簡得到函數(shù),可取出函數(shù)的對稱軸,確定距離最近的點,即可得到結(jié)論.10、A【解析】,所以,故選A。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,;由正弦定理,得,解得.考點:正弦定理.12、【解析】
根據(jù),兩個向量平行的條件是建立等式,解之即可.【詳解】解:因為,,且所以解得故答案為:【點睛】本題主要考查兩個向量坐標(biāo)形式的平行的充要條件,屬于基礎(chǔ)題.13、(0,1)【解析】
畫出函數(shù)f(x)在x∈0,2【詳解】解:畫出函數(shù)y=cosx+2|cosx|=3cos以及直線y=k的圖象,如圖所示;由f(x)的圖象與直線y=k有且僅有四個不同的交點,可得0<k<1.故答案為:(0,1).【點睛】本題主要考查利用分段函數(shù)及三角函數(shù)的性質(zhì)求參數(shù),數(shù)形結(jié)合是解題的關(guān)鍵.14、【解析】
以為坐標(biāo)原點建立平面直角坐標(biāo)系,用坐標(biāo)表示出的值,然后利用換元法求解出對應(yīng)的最小值即可.【詳解】如圖所示,設(shè),所以,根據(jù)條件可知:,所以,設(shè),,,所以,所以,所以,所以當(dāng)時,有最小值,最小值為.故答案為:.【點睛】本題考查利用坐標(biāo)法以及換元法求解最值,著重考查邏輯推理和運算求解的能力,屬于較難題(1)利用換元法求解最值時注意,換元后新元的取值范圍;(2)三角函數(shù)中的一組“萬能公式”:,.15、④【解析】
由題意結(jié)合奇函數(shù)的對稱性和所給函數(shù)的性質(zhì)即可求得最終結(jié)果.【詳解】奇函數(shù)的函數(shù)圖象關(guān)于坐標(biāo)原點中心對稱,則若奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為1,那么f(x)在區(qū)間[﹣7,﹣3]上是增函數(shù)且最大值為﹣1.故答案為:④.【點睛】本題考查了奇函數(shù)的性質(zhì),函數(shù)的對稱性及其應(yīng)用等,重點考查學(xué)生對基礎(chǔ)概念的理解和計算能力,屬于中等題.16、.【解析】
根據(jù)三角函數(shù)的定義求出的值,然后利用反三角函數(shù)的定義得出的值.【詳解】由三角函數(shù)的定義可得,,故答案為.【點睛】本題考查三角函數(shù)的定義以及反三角函數(shù)的定義,解本題的關(guān)鍵就是利用三角函數(shù)的定義求出的值,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)利用二倍角公式、輔助角公式進行化簡,,然后根據(jù)單調(diào)區(qū)間對應(yīng)的的公式求解單調(diào)區(qū)間;(2)根據(jù)計算出的值,再利用余弦定理計算出的最大值則可求面積的最大值,注意不等式取等號條件.【詳解】解:(1)∴函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知得(舍)或∴有余弦定理得即∴當(dāng)且僅當(dāng)時取等號∴【點睛】(1)輔助角公式:;(2)三角形中,已知一邊及其對應(yīng)角時,若要求解面積最大值,在未給定三角形形狀時,可選用余弦定理求解更方便,若是給定三角形形狀,這時選用正弦定理并需要對角的范圍作出判斷.18、(1)見證明;(2)4【解析】
(1)取的三等分點,使,證四邊形為平行四邊形,運用線面平行判定定理證明.(2)三棱錐的體積可以用求出結(jié)果.【詳解】(1)證明:取的三等分點,使,連接,.因為,,所以,.因為,,所以,,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)解:因為,,所以的面積為,因為底面,所以三棱錐的高為,所以三棱錐的體積為.因為,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【點睛】本題考查了線面平行的判定定理、三棱錐體積的計算,在證明線面平行時需要構(gòu)造平行四邊形來證明,三棱錐的體積計算可以選用割、補等方法.19、(1)見解析;(2)【解析】
(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當(dāng)與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當(dāng)與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設(shè),在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點睛】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能力,還考查了線面角知識,考查了二面角的平面角作法,考查空間思維能力及解三角形,考查了方程思想及計算能力,屬于難題.20、(1);(2)該樓房應(yīng)建為20層,每平方米的平均綜合費用最小值為5000元.【解析】【試題分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標(biāo)準(zhǔn)的攝影作品使用許可合同
- 二零二五年度凈水器綠色環(huán)保認(rèn)證采購合同
- 2025年度文化產(chǎn)業(yè)分紅合作協(xié)議范本(含IP授權(quán))3篇
- 2025年度公司設(shè)立前股東合作協(xié)議書(含知識產(chǎn)權(quán)保護)3篇
- 2025年度公司股東間應(yīng)急事件處理合作協(xié)議書3篇
- 2025年度農(nóng)產(chǎn)品電商平臺農(nóng)產(chǎn)品物流配送優(yōu)化合同版3篇
- 2025年度農(nóng)機租賃與農(nóng)業(yè)科研合作開發(fā)合同3篇
- 二零二五年度農(nóng)村宅基地租賃及土地流轉(zhuǎn)服務(wù)協(xié)議
- 2025年度農(nóng)產(chǎn)品深加工項目原料供應(yīng)合同版3篇
- 二零二五年度婚慶服務(wù)市場區(qū)域保護競業(yè)禁止合同2篇
- 普外科醫(yī)療組長競聘演講
- 北京市朝陽區(qū)2022-2023學(xué)年三年級上學(xué)期英語期末試卷
- 醫(yī)學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)智慧樹知到期末考試答案2024年
- 大學(xué)生國家安全教育智慧樹知到期末考試答案2024年
- 矛盾糾紛排查化解登記表
- 大班科學(xué)活動 有害的噪音
- 建筑施工成品保護措施
- 魚骨圖PPT模板精品教案0002
- 冠狀動脈造影基本知識-
- 油墨組成和分類
- 自動噴漆線使用說明書
評論
0/150
提交評論