2024屆山東臨沂市臨沭縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第1頁
2024屆山東臨沂市臨沭縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第2頁
2024屆山東臨沂市臨沭縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第3頁
2024屆山東臨沂市臨沭縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第4頁
2024屆山東臨沂市臨沭縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆山東臨沂市臨沭縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.為了得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向右平移個(gè)單位長度,再把各點(diǎn)的橫坐標(biāo)伸長到原來的3倍;B.向左平移個(gè)單位長度,再把各點(diǎn)的橫坐標(biāo)伸長到原來的3倍;C.向右平移個(gè)單位長度,再把各點(diǎn)的橫坐標(biāo)縮短到原來的倍;D.向左平移個(gè)單位長度,再把各點(diǎn)的橫坐標(biāo)縮短到原來的倍2.光線自點(diǎn)M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.3.某學(xué)校美術(shù)室收藏有6幅國畫,分別為人物、山水、花鳥各2幅,現(xiàn)從中隨機(jī)抽取2幅進(jìn)行展覽,則恰好抽到2幅不同種類的概率為()A. B. C. D.4.在四邊形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共線,則四邊形ABCD為()A.平行四邊形 B.矩形 C.梯形 D.菱形5.已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長為()A.2cm B.4cm C.6cm D.8cm6.下列說法正確的是()A.命題“若,則.”的否命題是“若,則.”B.是函數(shù)在定義域上單調(diào)遞增的充分不必要條件C.D.若命題,則7.的弧度數(shù)是()A. B. C. D.8.在北京召開的國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)如圖所示,它是由個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形,若直角三角形中較小的銳角為,大正方形的面積是,小正方形的面積是,則()A. B. C. D.9.已知等差數(shù)列an的前n項(xiàng)和為Sn,若S1=1,A.32 B.54 C.10.已知直三棱柱的所有棱長都相等,為的中點(diǎn),則與所成角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期為________.12.設(shè)數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項(xiàng)的和________13.求的值為________.14.在中,角所對的邊分別為,若,則=______.15.已知向量,,且,則______.16.已知,則的取值范圍是_______;三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的前項(xiàng)和為,公比,,.(1)求等比數(shù)列的通項(xiàng)公式;(2)設(shè),求的前項(xiàng)和.18.設(shè)函數(shù).(1)已知圖象的相鄰兩條對稱軸的距離為,求正數(shù)的值;(2)已知函數(shù)在區(qū)間上是增函數(shù),求正數(shù)的最大值.19.如圖,平行四邊形中,是的中點(diǎn),交于點(diǎn).設(shè),.(1)分別用,表示向量,;(2)若,,求.20.已知,,其中,,且函數(shù)在處取得最大值.(1)求的最小值,并求出此時(shí)函數(shù)的解析式和最小正周期;(2)在(1)的條件下,先將的圖像上的所有點(diǎn)向右平移個(gè)單位,再把所得圖像上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),然后將所得圖像上所有的點(diǎn)向下平移個(gè)單位,得到函數(shù)的圖像.若在區(qū)間上,方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;(3)在(1)的條件下,已知點(diǎn)P是函數(shù)圖像上的任意一點(diǎn),點(diǎn)Q為函數(shù)圖像上的一點(diǎn),點(diǎn),且滿足,求的解集.21.某醫(yī)學(xué)院讀書協(xié)會(huì)欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會(huì)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會(huì)所得線性回歸方程是否理想?參考公式:回歸直線的方程,其中,.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.【詳解】把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)向左平移個(gè)單位長度,可得函數(shù)y=2sin(x)的圖象,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),可得函數(shù)y=2sin(),x∈R的圖象,故選:B.【點(diǎn)睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.2、B【解析】試題分析:點(diǎn)關(guān)于軸的對稱點(diǎn),則反射光線即在直線上,由,∴,故選B.考點(diǎn):直線方程的幾種形式.3、B【解析】

算出基本事件的總數(shù)和隨機(jī)事件中基本事件的個(gè)數(shù),利用古典概型的概率的計(jì)算公式可求概率.【詳解】設(shè)為“恰好抽到2幅不同種類”某學(xué)校美術(shù)室收藏有6幅國畫,分別為人物、山水、花鳥各2幅,現(xiàn)從中隨機(jī)抽取2幅進(jìn)行展覽,基本事件總數(shù),恰好抽到2幅不同種類包含的基本事件個(gè)數(shù),則恰好抽到2幅不同種類的概率為.故選B.【點(diǎn)睛】計(jì)算出所有的基本事件的總數(shù)及隨機(jī)事件中含有的基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算即可.計(jì)數(shù)時(shí)應(yīng)該利用排列組合的方法.4、C【解析】∵=++=-8a-2b=2,與不平行,∴四邊形ABCD為梯形.5、C【解析】設(shè)扇形的半徑為R,則R2θ=2,∴R2=1R=1,∴扇形的周長為2R+θ·R=2+4=6(cm).6、D【解析】“若p則q”的否命題是“若則”,所以A錯(cuò)。在定義上并不是單調(diào)遞增函數(shù),所以B錯(cuò)。不存在,C錯(cuò)。全稱性命題的否定是特稱性命題,D對,選D.7、B【解析】

由角度與弧度的關(guān)系轉(zhuǎn)化.【詳解】-150.故選:B.【點(diǎn)睛】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.8、C【解析】

根據(jù)題意即可算出每個(gè)直角三角形的面積,再根據(jù)勾股定理和面積關(guān)系即可算出三角形的兩條直角邊.從而算出【詳解】由題意得直角三角形的面積,設(shè)三角形的邊長分別為,則有,所以,所以,選C.【點(diǎn)睛】本題主要考查了三角形的面積公式以及直角三角形中,正弦、余弦的計(jì)算,屬于基礎(chǔ)題.9、C【解析】

利用前n項(xiàng)和Sn的性質(zhì)可求S【詳解】設(shè)Sna+b=116a+4b=16a+8b,故a=1b=0,故S6【點(diǎn)睛】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn10、D【解析】

取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

根據(jù)正切型函數(shù)的周期公式可計(jì)算出函數(shù)的最小正周期.【詳解】由正切型函數(shù)的周期公式得,因此,函數(shù)的最小正周期為,故答案為.【點(diǎn)睛】本題考查正切型函數(shù)周期的求解,解題的關(guān)鍵在于正切型函數(shù)周期公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.12、2019【解析】

根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標(biāo)和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項(xiàng)的和為,故答案為.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應(yīng)用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應(yīng)用,屬于中等題.13、44.5【解析】

通過誘導(dǎo)公式,得出,依此類推,得出原式的值.【詳解】,,同理,,故答案為44.5.【點(diǎn)睛】本題主要考查了三角函數(shù)中的誘導(dǎo)公式的運(yùn)用,得出是解題的關(guān)鍵,屬于基礎(chǔ)題.14、【解析】根據(jù)正弦定理得15、【解析】

根據(jù)的坐標(biāo)表示,即可得出,解出即可.【詳解】,,.【點(diǎn)睛】本題主要考查平行向量的坐標(biāo)關(guān)系應(yīng)用.16、【解析】

本題首先可以根據(jù)向量的運(yùn)算得出,然后等式兩邊同時(shí)平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因?yàn)椋?,即,因?yàn)椋?,即,所以的取值范圍是.【點(diǎn)睛】本題考查向量的運(yùn)算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計(jì)算能力,是簡單題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將已知兩式作差,利用等比數(shù)列的通項(xiàng)公式,可得公比,由等比數(shù)列的求和可得首項(xiàng),進(jìn)而得到所求通項(xiàng)公式;(2)求得bn=n,,由裂項(xiàng)相消求和可得答案.【詳解】(1)等比數(shù)列的前項(xiàng)和為,公比,①,②.②﹣①,得,則,又,所以,因?yàn)?,所以,所以,所以;?),所以前項(xiàng)和.【點(diǎn)睛】裂項(xiàng)相消法適用于形如(其中是各項(xiàng)均不為零的等差數(shù)列,c為常數(shù))的數(shù)列.裂項(xiàng)相消法求和,常見的有相鄰兩項(xiàng)的裂項(xiàng)求和,還有一類隔一項(xiàng)的裂項(xiàng)求和,如或.18、(1)1;(2).【解析】

(1)由二倍角公式可化函數(shù)為,結(jié)合正弦函數(shù)的性質(zhì)可得;(2)先求得的增區(qū)間,其中,此區(qū)間應(yīng)包含,這樣可得之間的不等關(guān)系,利用>0,得的范圍,從而得,最終可得的最大值.【詳解】解法1:(1)因?yàn)閳D象的相鄰兩條對稱軸的距離為,所以的最小正周期為,所以正數(shù).(2)因?yàn)?,所以由得單調(diào)遞增區(qū)間為,其中.由題設(shè),于是,得因?yàn)?,所以,,因?yàn)椋?,所以,正?shù)的最大值為.解法2:(1)同解法1.(2)當(dāng)時(shí),因?yàn)樵趩握{(diào)遞增,因?yàn)?,所以于是,解得,故正?shù)的最大值為.【點(diǎn)睛】本題考查二倍角公式,考查三角函數(shù)的性質(zhì).解題關(guān)鍵是化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,即形式,然后結(jié)合正弦函數(shù)的性質(zhì)求解.19、(1),(2)2【解析】

(1)由平面的加法可得,又根據(jù)三角形相似得到,再根據(jù)向量的減法可得的不等式.

(2)由平面向量數(shù)量積運(yùn)算得,然后再將條件代入可得答案.【詳解】(1).由∽,又所以,即(2)由,【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算及平面向量數(shù)量積運(yùn)算,屬中檔題.20、(1)的最小值為1,,,(2)(3)原不等式的解集為【解析】

(1)先將化成正弦型,然后利用在處取得最大值求出,然后即可得到的解析式和周期(2)先根據(jù)圖象的變換得到,然后畫出在區(qū)間上的圖象,條件轉(zhuǎn)化為的圖象與直線有兩個(gè)交點(diǎn)即可(3)利用坐標(biāo)的對應(yīng)關(guān)系式,求出的函數(shù)的關(guān)系式,進(jìn)一步利用三角不等式的應(yīng)用求出結(jié)果.【詳解】(1)因?yàn)椋砸驗(yàn)樵谔幦〉米畲笾?所以,即當(dāng)時(shí)的最小值為1此時(shí),(2)將的圖像上的所有的點(diǎn)向右平移個(gè)單位得到的函數(shù)為,再把所得圖像上所有的點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變)得到的函數(shù)為,然后將所得圖像上所有的點(diǎn)向下平移個(gè)單位,得到函數(shù)在區(qū)間上的圖象為:方程有兩個(gè)不相等的實(shí)數(shù)根等價(jià)于的圖象與直線有兩個(gè)交點(diǎn)所以,解得(3)設(shè),因?yàn)辄c(diǎn),且滿足所以,所以因?yàn)辄c(diǎn)為函數(shù)圖像上的一點(diǎn)所以即因?yàn)椋运运运栽坏仁降慕饧癁椤军c(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,平面向量的數(shù)量積的應(yīng)用,三角不等式的解法及應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.21、(1)(2)該協(xié)會(huì)所得線性回歸方程是理想的【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù)求出x,y的平均數(shù),根據(jù)求線性回歸系數(shù)的方法,求出系數(shù),把和,代入公式,求出的值,寫出線性回歸方程;(2)根據(jù)所求的線性回歸方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論