上海市楊浦區(qū)控江中學2024屆高一數(shù)學第二學期期末聯(lián)考試題含解析_第1頁
上海市楊浦區(qū)控江中學2024屆高一數(shù)學第二學期期末聯(lián)考試題含解析_第2頁
上海市楊浦區(qū)控江中學2024屆高一數(shù)學第二學期期末聯(lián)考試題含解析_第3頁
上海市楊浦區(qū)控江中學2024屆高一數(shù)學第二學期期末聯(lián)考試題含解析_第4頁
上海市楊浦區(qū)控江中學2024屆高一數(shù)學第二學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市楊浦區(qū)控江中學2024屆高一數(shù)學第二學期期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在一個平面上,機器人到與點的距離為8的地方繞點順時針而行,它在行進過程中到經(jīng)過點與的直線的最近距離為()A. B. C. D.2.已知向量,且,則的值為()A. B. C. D.3.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.4.已知x?y的取值如下表:x0134y2.24.34.86.7從散點圖可以看出y與x線性相關,且回歸方程,則當時,估計y的值為()A.7.1 B.7.35 C.7.95 D.8.65.已知樣本數(shù)據(jù)為3,1,3,2,3,2,則這個樣本的中位數(shù)與眾數(shù)分別為()A.2,3 B.3,3 C.2.5,3 D.2.5,26.已知=(2,3),=(3,t),=1,則=A.-3 B.-2C.2 D.37.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.8.如圖所示,垂直于以為直徑的圓所在的平面,為圓上異于的任一點,則下列關系中不正確的是()A. B.平面 C. D.9.已知直線a2x+y+2=0與直線bx-(a2+1)y-1=0互相垂直,則|ab|的最小值為A.5 B.4 C.2 D.110.函數(shù)f(x)=sinA.1 B.2 C.3 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,公差不為零,且、、恰好為某等比數(shù)列的前三項,那么該等比數(shù)列公比的值等于____________.12.的值為__________.13.設Sn為數(shù)列{an}的前n項和,若Sn=(-1)nan-,n∈N,則a3=________.14.如圖,在中,,,,則________.15.函數(shù)的定義域為________16.計算:__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.定義:對于任意,滿足條件且(是與無關的常數(shù))的無窮數(shù)列稱為數(shù)列.(1)若,證明:數(shù)列是數(shù)列;(2)設數(shù)列的通項為,且數(shù)列是數(shù)列,求常數(shù)的取值范圍;(3)設數(shù)列,若數(shù)列是數(shù)列,求的取值范圍.18.為了了解高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.(1)求第二小組的頻率;(2)求樣本容量;(3)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?19.設函數(shù)f(x)=x(1)當a=2時,函數(shù)f(x)的圖像經(jīng)過點(1,a+1),試求m的值,并寫出(不必證明)f(x)的單調遞減區(qū)間;(2)設a=-1,h(x)+x?f(x)=0,g(x)=2cos(x-π3),若對于任意的s∈[1,2],總存在t∈[0,π]20.已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.21.設角,,其中:(1)若,求角的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由題意知機器人的運行軌跡為圓,利用圓心到直線的距離求出最近距離.【詳解】解:機器人到與點距離為8的地方繞點順時針而行,在行進過程中保持與點的距離不變,機器人的運行軌跡方程為,如圖所示;與,直線的方程為,即為,則圓心到直線的距離為,最近距離為.故選.【點睛】本題考查了直線和圓的位置關系,以及點到直線的距離公式,屬于基礎題.2、B【解析】

由向量平行可構造方程求得結果.【詳解】,解得:故選:【點睛】本題考查根據(jù)向量平行求解參數(shù)值的問題,關鍵是明確兩向量平行可得.3、D【解析】

為三角形,,平面,

且,則多面體的正視圖中,

必為虛線,排除B,C,

說明右側高于左側,排除A.,故選D.4、B【解析】

計算,,代入回歸方程計算得到,再計算得到答案.【詳解】,,故,解得.當,.故選:【點睛】本題考查了回歸方程的應用,意在考查學生的計算能力.5、C【解析】

將樣本數(shù)據(jù)從小到大排列即可求得中位數(shù),再找出出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù).【詳解】將樣本數(shù)據(jù)從小到大排列:1,2,2,3,3,3,中位數(shù)為,眾數(shù)為3.故選:C.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,屬于基礎題.6、C【解析】

根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.【詳解】由,,得,則,.故選C.【點睛】本題考點為平面向量的數(shù)量積,側重基礎知識和基本技能,難度不大.7、D【解析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當與面垂直時體積最大,最大值為,,設球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關鍵.8、C【解析】

由平面,得,再由,得到平面,進而得到,即可判斷出結果.【詳解】因為垂直于以為直徑的圓所在的平面,即平面,得,A正確;又為圓上異于的任一點,所以,平面,,B,D均正確.故選C.【點睛】本題主要考查線面垂直,熟記線面垂直的判定定理與性質定理即可,屬于常考題型.9、C【解析】試題分析:由已知有,∴,∴.考點:1.兩直線垂直的充要條件;2.均值定理的應用.10、A【解析】

對sin(x+π3【詳解】∵f(x)=sin∴f(x)【點睛】考查三角恒等變換、輔助角公式及余弦函數(shù)的最值.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

由題意將表示為的方程組求解得,即可得等比數(shù)列的前三項分別為﹑、,則公比可求【詳解】由題意可知,,又因為,,代入上式可得,所以該等比數(shù)列的前三項分別為﹑、,所以.故答案為:4【點睛】本題考查等差等比數(shù)列的基本量計算,考查計算能力,是基礎題12、【解析】

直接利用誘導公式化簡求值.【詳解】,故答案為:.【點睛】本題考查誘導公式的應用,屬于基礎題.13、-【解析】當n=3時,S3=a1+a2+a3=-a3-,則a1+a2+2a3=-,當n=4時,S4=a1+a2+a3+a4=a4-,兩式相減得a3=-.14、【解析】

先將轉化為和為基底的兩組向量,然后通過數(shù)量積即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,數(shù)量積運算,意在考查學生的分析能力和計算能力.15、【解析】

根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,即可求解.【詳解】由題意,根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,解得,即函數(shù)的定義域為.故答案為:【點睛】本題主要考查了反余弦函數(shù)的定義的應用,其中解答中熟記反余弦函數(shù)的定義,列出不等式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、0【解析】

直接利用數(shù)列極限的運算法則,分子分母同時除以,然后求解極限可得答案.【詳解】解:,故答案為:0.【點睛】本題主要考查數(shù)列極限的運算法則,屬于基礎知識的考查.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】

(1)根據(jù)題中的新定義代入即可證出.(2)設,,,代入通項解不等式組,使即可求解.(3)首先根據(jù)可求時,,當時,,根據(jù)題中新定義求出成立,可得,再驗證恒成立即可求解.【詳解】(1),且,則滿足,則數(shù)列是數(shù)列.綜上所述,結論是:數(shù)列是數(shù)列.(2)設,,則,得,,,則數(shù)列的最大值為,則(3),當時,當時,,由,得,當時,恒成立,則要使數(shù)列是數(shù)列,則的取值范圍為.【點睛】本題考查數(shù)列的性質和應用,解題時要認真審題,仔細解答,注意合理地進行等價轉化.18、(1);(2);(3)%【解析】

(1)由于每個長方形的面積即為本組的頻率,設第二小組的頻率為4,則解得第二小組的頻率為(2)設樣本容量為,則(3)由(1)和直方圖可知,次數(shù)在110以上的頻率為由此估計全體高一學生的達標率為%19、(1)遞減區(qū)間為[-2,0)和(0,2【解析】

(1)將點(1,3)代入函數(shù)f(x)即可求出m,根據(jù)函數(shù)的解析式寫出單調遞減區(qū)間即可(2)當a=-1時,寫出函數(shù)h(x),由題意知h(s)的值域是g(t)值域的子集,即可求出.【詳解】(1)因為函數(shù)f(x)的圖像經(jīng)過點(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴????∴f(x)的單調遞減區(qū)間為[-2,0)(2)當a=-1時,f(x)=x-1∴???∵g(x)=2cos∴??t∈[0,π]時,g(t)∈[-1,2]由對于任意的s∈[1,2],總存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因為h(x)=-x2-mx+1①當-m2≤1只需滿足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②當1<-m2<2因為h(1)=-m>2,與h(s)?[-1,2]矛盾,故舍去.③當-m2≥2h(1)=-m≥4與h(s)?[-1,2]矛盾,故舍去.綜上,m∈[-2,-1].【點睛】本題主要考查了函數(shù)的單調性,以及含參數(shù)二次函數(shù)值域的求法,涉及存在性問題,轉化思想和分類討論思想要求較高,屬于難題.20、(1);(2).【解析】

(1)設等差數(shù)列{an}的公差為d,由已知條件可得,解得,故數(shù)列{an}的通項公式為an=2-n.(2)設數(shù)列的前n項和為Sn,∵,∴Sn=-記Tn=,①則Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.21、(1);(2).【解析】

(1)由,可得出,進而得出,結合可求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論