版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省宜春市2024屆高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.當為第二象限角時,的值是().A. B. C. D.2.在中,,是的內(nèi)心,若,其中,動點的軌跡所覆蓋的面積為(
)A. B. C. D.3.如圖所示,4個散點圖中,不適合用線性回歸模型擬合其中兩個變量的是()A. B.C. D.4.設(shè),是定義在上的兩個周期函數(shù),的周期為,的周期為,且是奇函數(shù).當時,,,其中.若在區(qū)間上,函數(shù)有個不同的零點,則的取值范圍是()A. B. C. D.5.在空間直角坐標系中,點P(3,4,5)關(guān)于平面的對稱點的坐標為()A.(?3,4,5) B.(?3,?4,5)C.(3,?4,?5) D.(?3,4,?5)6.已知定義在上的偶函數(shù)滿足:當時,,若,則的大小關(guān)系是()A. B. C. D.7.已知是定義在上的奇函數(shù),且滿足,當時,,則函數(shù)在區(qū)間上所有零點之和為()A.4 B.6 C.8 D.128.已知數(shù)列an的前4項為:l,-12,13,A.a(chǎn)n=C.a(chǎn)n=9.設(shè)滿足約束條件,則的最小值為()A.3 B.4 C.5 D.1010.設(shè),是兩個不同的平面,,是兩條不同的直線,且,()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為.12.若一組樣本數(shù)據(jù),,,,的平均數(shù)為,則該組樣本數(shù)據(jù)的方差為13.在等差數(shù)列中,,,則的值為_______.14.如圖,正方體中,的中點為,的中點為,為棱上一點,則異面直線與所成角的大小為__________.15.已知實數(shù)滿足,則的最大值為_______.16.已知函數(shù),有以下結(jié)論:①若,則;②在區(qū)間上是增函數(shù);③的圖象與圖象關(guān)于軸對稱;④設(shè)函數(shù),當時,.其中正確的結(jié)論為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,點在邊上,(1)求的度數(shù);(2)求的長度.18.已知圓的方程為,直線l的方程為,點P在直線l上,過點P作圓的切線PA,PB,切點為A,B.(1)若,求點P的坐標;(2)求證:經(jīng)過A,P,三點的圓必經(jīng)過異于的某個定點,并求該定點的坐標.19.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.20.在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;(2)設(shè)直線與圓交于不同的兩點、,且,求圓的方程;(3)設(shè)直線與(2)中所求圓交于點、,為直線上的動點,直線、與圓的另一個交點分別為、,求證:直線過定點.21.已知函數(shù)的最小正周期是.(1)求的值及函數(shù)的單調(diào)遞減區(qū)間;(2)當時,求函數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)為第二象限角,,,去掉絕對值,即可求解.【詳解】因為為第二象限角,∴,,∴,故選C.【點睛】本題重點考查三角函數(shù)值的符合,三角函數(shù)在各個象限內(nèi)的符號可以結(jié)合口訣:一全正,二正弦,三正切,四余弦,增加記憶印象,屬于基礎(chǔ)題2、A【解析】
畫出圖形,由已知條件便知P點在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動點P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動點P的軌跡所覆蓋圖形的面積為.故答案為:A.【點睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點所覆蓋的區(qū)域.3、A【解析】
根據(jù)線性回歸模型建立方法,分析選項,找出散點比較分散且無任何規(guī)律的選項可得答案.【詳解】根據(jù)題意,適合用線性回歸擬合其中兩個變量的散點圖必須散點分布比較集中,且大體接近某一條直線,分析選項可得A選項的散點圖雜亂無章,最不符合條件.故選A【點睛】本題考查了統(tǒng)計案例散點圖,屬于基礎(chǔ)題.4、B【解析】
根據(jù)題意可知,函數(shù)和在上的圖象有個不同的交點,作出兩函數(shù)圖象,即可數(shù)形結(jié)合求出.【詳解】作出兩函數(shù)的圖象,如圖所示:由圖可知,函數(shù)和在上的圖象有個不同的交點,故函數(shù)和在上的圖象有個不同的交點,才可以滿足題意.所以,圓心到直線的距離為,解得,因為兩點連線斜率為,所以,.故選:B.【點睛】本題主要考查了分段函數(shù)的圖象應(yīng)用,函數(shù)性質(zhì)的應(yīng)用,函數(shù)的零點個數(shù)與兩函數(shù)圖象之間的交點個數(shù)關(guān)系的應(yīng)用,意在考查學生的轉(zhuǎn)化能力和數(shù)形結(jié)合能力,屬于中檔題.5、A【解析】
由關(guān)于平面對稱的點的橫坐標互為相反數(shù),縱坐標和豎坐標相等,即可得解.【詳解】關(guān)于平面對稱的點的橫坐標互為相反數(shù),縱坐標和豎坐標相等,所以點P(3,4,5)關(guān)于平面的對稱點的坐標為(?3,4,5).故選A.【點睛】本題主要考查了空間點的對稱點的坐標求法,屬于基礎(chǔ)題.6、C【解析】
根據(jù)函數(shù)的奇偶性將等價變形為,再根據(jù)函數(shù)在上單調(diào)性判斷函數(shù)值的大小關(guān)系,從而得出正確選項.【詳解】解因為函數(shù)為偶函數(shù),故,因為,,所以,因為函數(shù)在上單調(diào)增,故,故選C.【點睛】本題考查了函數(shù)單調(diào)性與奇偶性的運用,解題的關(guān)鍵是要能根據(jù)奇偶性將函數(shù)值進行轉(zhuǎn)化.7、C【解析】
根據(jù)函數(shù)的奇偶性和對稱性,判斷出函數(shù)的周期,由此畫出的圖像.由化簡得,畫出的圖像,由與圖像的交點以及對稱性,求得函數(shù)在區(qū)間上所有零點之和.【詳解】由于,故是函數(shù)的對稱軸,由于為奇函數(shù),故函數(shù)是周期為的周期函數(shù),當時,,由此畫出的圖像如下圖所示.令,注意到,故上述方程可化為,畫出的圖像,由圖可知與圖像都關(guān)于點對稱,它們兩個函數(shù)圖像的個交點也關(guān)于點對稱,所以函數(shù)在區(qū)間上所有零點之和為.故選:C.【點睛】本小題主要考查函數(shù)的奇偶性、對稱性以及周期性,考查函數(shù)零點問題的求解策略,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.8、D【解析】
分母與項數(shù)一樣,分子都是1,正負號相間出現(xiàn),依此可得通項公式【詳解】正負相間用(-1)n-1表示,∴a故選D.【點睛】本題考查數(shù)列的通項公式,屬于基礎(chǔ)題,關(guān)鍵是尋找規(guī)律,尋找與項數(shù)有關(guān)的規(guī)律.9、B【解析】
結(jié)合題意畫出可行域,然后運用線性規(guī)劃知識來求解【詳解】如圖由題意得到可行域,改寫目標函數(shù)得,當取到點時得到最小值,即故選【點睛】本題考查了運用線性規(guī)劃求解最值問題,一般步驟:畫出可行域,改寫目標函數(shù),求出最值,需要掌握解題方法10、A【解析】試題分析:由面面垂直的判定定理:如果一個平面經(jīng)過另一平面的一條垂線,則兩面垂直,可得,可得考點:空間線面平行垂直的判定與性質(zhì)二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用商數(shù)關(guān)系式化簡即可.【詳解】,故填.【點睛】利用同角的三角函數(shù)的基本關(guān)系式可以化簡一些代數(shù)式,常見的方法有:(1)弦切互化法:即把含有正弦和余弦的代數(shù)式化成關(guān)于正切的代數(shù)式,也可以把含有正切的代數(shù)式化為關(guān)于余弦和正弦的代數(shù)式;(2)“1”的代換法:有時可以把看成.12、【解析】因為該組樣本數(shù)據(jù)的平均數(shù)為2017,所以,解得,則該組樣本數(shù)據(jù)的方差為.13、.【解析】
設(shè)等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【點睛】本題考查等差數(shù)列的項的計算,常利用首項和公差建立方程組,結(jié)合通項公式以及求和公式進行計算,考查方程思想,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意得到直線MP運動起來構(gòu)成平面,可得到面,進而得到結(jié)果.【詳解】取的中點O連接,,根據(jù)題意可得到直線MP是一條動直線,當點P變動時直線就構(gòu)成了平面,因為MO均為線段的中點,故得到,四邊形為平行四邊形,面,故得到,又面,進而得到.故夾角為.故答案為.【點睛】這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問題;或者證明線面垂直進而得到面面垂直,這種方法適用于異面直線垂直的時候.15、【解析】
根據(jù)約束條件,畫出可行域,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,從而找到最大值時的最優(yōu)解,得到最大值.【詳解】根據(jù)約束條件可以畫出可行域,如下圖陰影部分所示,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,因此可得,當在點時,斜率最大聯(lián)立,得即所以此時斜率為,故答案為.【點睛】本題考查簡單線性規(guī)劃問題,求目標函數(shù)為分式的形式,關(guān)鍵是要對分式形式的轉(zhuǎn)化,屬于中檔題.16、②③④【解析】
首先化簡函數(shù)解析式,逐一分析選項,得到答案.【詳解】①當時,函數(shù)的周期為,,或,所以①不正確;②時,,所以是增函數(shù),②正確;③函數(shù)還可以化簡為,所以與關(guān)于軸對稱,正確;④,當時,,,④正確故選②③④【點睛】本題考查了三角函數(shù)的化簡和三角函數(shù)的性質(zhì),屬于中檔題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)中直接由余弦定理可得,然后得到的度數(shù);(2)由(1)知,在中,由正弦定理可直接得到的值.【詳解】解:(1)在中,,,由余弦定理,有,在中,;(2)由(1)知,在中,由正弦定理,有,.【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,考查了計算能力,屬于基礎(chǔ)題.18、(1)和;(2)和【解析】
(1)設(shè),連接,分析易得,即有,解得的值,即可得到答案.(2)根據(jù)題意,分析可得:過A,P,三點的圓為以為直徑的圓,設(shè)的坐標為,用表示過A,P,三點的圓為,結(jié)合直線與圓的位置關(guān)系,分析可得答案.【詳解】(1)根據(jù)題意,點P在直線l上,設(shè),連接,因為圓的方程為,所以圓心,半徑,因為過點P作圓的切線PA,PB,切點為A,B;則有,且,易得,又由,即,則,即有,解得或,即的坐標為和.(2)根據(jù)題意,是圓的切線,則,則過A,P,三點的圓為以為直徑的圓,設(shè)的坐標為,,則以為直徑的圓為,變形可得:,即,則有,解得或,則當和,時,恒成立,則經(jīng)過A,P,三點的圓必經(jīng)過異于的某個定點,且定點的坐標和.【點睛】本題考查了直線與圓的位置關(guān)系、圓中的定點問題,考查學生分析問題、解決問題的能力,屬于中檔題.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點.【詳解】(Ⅰ)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.(Ⅲ)存在點為中點時,滿足平面;理由如下:分別取的中點,連接,在三角形中,且;在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1)證明見解析;(2);(3)證明見解析.【解析】
(1)由題意設(shè)圓心坐標為,可得半徑為,求出圓的方程,分別令、,可得出點、的坐標,利用三角形的面積公式即可證明出結(jié)論成立;(2)由,知,利用兩直線垂直的等價條件:斜率之積為,解方程可得,討論的取值,求得圓心到直線的距離,即可得到所求圓的方程;(3)設(shè),、,求得、的坐標,以及直線、的方程,聯(lián)立圓的方程,利用韋達定理,結(jié)合,得出,設(shè)直線的方程為,代入圓的方程,利用韋達定理,可得、之間的關(guān)系,即可得出所求的定點.【詳解】(1)由題意可設(shè)圓心為,則圓的半徑為,則圓的方程為,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.當時,圓心到直線的距離小于半徑,符合題意;當時,圓心到直線的距離大于半徑,不符合題意.所以,所求圓的方程為;(3)設(shè),,,又知,,所以,.因為,所以.將,代入上式,整理得.①設(shè)直線的方程為,代入,整理得.所以,.代入①式,并整理得,即,解得或.當時,直線的方程為,過定點;當時,直線的方程為,過定點檢驗定點和、共線,不合題意,舍去.故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游餐飲員工績效總結(jié)
- 木材銷售工作總結(jié)
- 服裝店衛(wèi)生衛(wèi)生規(guī)范標準
- 十年級化學學科的教學工作總結(jié)
- 制冷空調(diào)行業(yè)人力資源管理實踐
- 《疼痛治療》課件
- 《房地產(chǎn)市場簡報》課件
- 2021年廣東省汕尾市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年四川省德陽市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年內(nèi)蒙古自治區(qū)烏海市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 幕墻工程材料組織、運輸裝卸和垂直運輸方案
- 灌溉用水循環(huán)利用技術(shù)
- 泌尿科一科一品匯報課件
- 2024年江西省三校生高職英語高考試卷
- 中國古代文學智慧樹知到期末考試答案章節(jié)答案2024年廣州大學
- 重慶市南岸區(qū)2022-2023學年五年級上學期期末語文試卷
- 現(xiàn)澆鋼筋混凝土整體式肋梁樓蓋結(jié)構(gòu)-課程設(shè)計
- 浙江省舟山市2023-2024學年高二上學期1月期末檢測地理試題(解析版)
- 《寫字樓招商方案》課件
- 服務(wù)器維保應(yīng)急預(yù)案
- 煙花爆竹經(jīng)營
評論
0/150
提交評論